

z^3
A 21st Century Language

ZCubes, Inc.
http://www.zcubes.com

http://www.zcubes.com/

ii

A

21st
century language

for natural, simple and powerful

human computer interaction.

More information @ http://wiki.zcubes.com

iii

z^3
A 21st Century Language

by

ZCubes, Inc.

Silkrays Publishing, Texas

UNITED STATES of America.

iv

z^3

A 21st Century Language

Copyright © 2016 by ZCubes, Inc.

First Edition

All rights reserved. No part of this book may be used or reproduced by any means, graphic, electronic, or mechanical, including
photocopying, recording, taping or by any information storage retrieval system without the written permission of the publisher

except in the case of brief quotations embodied in critical articles and reviews.

Silkrays books may be ordered through booksellers or by contacting:

Silkrays Publishing Corporation
www.silkrays.com

silkrays.publishing@gmail.com

The views expressed in this work are solely views that are of the author and do not necessarily reflect the
views of the publisher, and the publisher hereby disclaims any responsibility for them.

ISBN: 978-0-9824326-4-8 (pbk)

Printed in the United States of America.
Silkrays Rev. Date: 12/30/2016

Dedicated to the:

Innovators,
 who make all things happen.

And teachers,
like Dr. Salih Yurttas,

who make such innovators.

https://www.myidentifiers.com/myaccount_manageisbns_titlereg?isbn=978-0-9824326-4-8&icon_type=new

v

“The difficulty lies not so much in developing new ideas as in escaping from old
ones…”

John Maynard Keynes
(British Economist, 1883-1946)

“Sit down before fact as a little child, be prepared to give up every conceived
notion, follow humbly wherever and whatever abysses nature leads, or you will

learn nothing…”

Thomas Huxley
(English Biologist, 1825-1895)

“We use one stage of technology to create the next stage, which is why technology
accelerates, why it grows in power…”

Ray Kurzweil
(Futurist, b. 1948)

“Creativity is just connecting things…”

Steve Jobs
(American Inventor, 1955-2011)

http://thinkexist.com/birthday/october_16/
http://thinkexist.com/birthday/november_30/
http://thinkexist.com/nationality/irish_authors/
http://thinkexist.com/birthday/february_2/
http://thinkexist.com/birthday/january_13/
http://thinkexist.com/quotes/albert_einstein/
http://thinkexist.com/birthday/march_14/
https://en.wikiquote.org/wiki/Creativity
https://en.wikiquote.org/wiki/Creativity
http://thinkexist.com/quotes/winston_churchill/
http://thinkexist.com/birthday/november_30/
http://thinkexist.com/birthday/january_24/

vi

Contents
1. Introduction ...1

2. What is z^3? ..1

2.a. ZCubes Platform ... 1
2.b. Z^3 Programming Interface 2
2.c. Z^3 Console ... 2
2.d. ZCubes – Selected Features 3
2.e. Command Line Version of z^3 3

3. Data Collections ..4

3.a. Sets ... 4
3.b. Set – Simply a Collection of Data 4

4. Set – Object Representations ..5

4.a. Set – Complex Set Layouts 6
4.b. Matrix – as a Set of Set(s) .. 6
4.c. Matrix Operator(||) .. 6
4.d. Set input to Functions ... 8
4.e. | | Binary Operation .. 8

4.e.i. Member Functions of Set .. 9
4.f. @ - Applied To Operator .. 10

4.f.i. Combinatorial Arguments 10
4.f.ii. Applying Combinatorial Set to Set of Functions ... 11
4.f.iii. Simple Function Representations 11
4.f.iv. Easy Multi-Line Representation of z^3 Code 11
4.f.v. Using || as "Such That" Boolean Expressions . 12

4.g. Associative Set/Composite Set As Objects 12
4.g.i. Global Assignments using <<< 14

5. Functions ... 14

5.a. Set of Functions ... 14
5.b. Simple Reusable Function Declarations 15

5.b.i. Combinatorial Arguments 16
5.c. Set $, $$, $$$ and $_ Member Functions 17
5.d. Set Functions and Set Programming 17
5.e. Advanced computation of lists 18
5.f. Series computation ... 19

6. Built-in Functions in z^3 ... 19

6.a. Permutations and Combinations 19
6.a.i. Common Number Series....................................... 20
6.a.ii. Simple Number Stats ... 20
6.a.iii. Set Operations .. 21

7. z^3 Simple Examples .. 22

7.a. Sets and Related Structures 22
7.a.i. Matrices ... 22
7.a.ii. Toeplitz matrix .. 23
7.a.iii. Matrix Sizes .. 25
7.a.iv. Matrix Operations ... 25
7.a.v. Matrix Arithmetic Operations 26

7.b. Vector Operations ... 26
7.b.i. Matrix Determinants ... 27

7.c. Matrix Rotations .. 27

7.c.i. Simple Matrix Merging with Functions 28
7.c.ii. Across Matrices Merging with Functions 28
7.c.iii. Quick Multiplication Tables 28

7.d. Puzzles and Other Interesting Computations .. 29
7.d.i. Magic Square ... 29
7.d.ii. N-Queens Puzzle ... 30
7.d.iii. Birthday Probability ... 31
7.d.iv. Towers Of Hanoi ... 32
7.d.v. Floyds Triangle ... 34
7.d.vi. Fractals-Mandelbrot ... 34
7.d.vii. Lissajous .. 35
7.d.viii. Graphing Data curve 37

7.e. Financial Functions ... 38
7.f. Statistical Functions: ... 40

8. Appendices ... 41

8.a. Appendix I Operators ... 41
8.b. Appendix II: Simple Set and Objects 41

8.b.i. Set .. 41
8.b.ii. Associative Set/Objects .. 41

8.c. Appendix III: Javascript and z^3 42
8.c.i. Using Set Member Functions 42

8.d. Appendix IV Series Generation 43
8.d.i. Arithmetic Series .. 43
8.d.ii. Geometric Series.. 43
8.d.iii. Prepacked Series ... 43
8.d.iv. Date Series ... 43
8.d.v. Alphabet Series .. 43

8.e. Appendix V Member Functions 43

9. How to work with zcubes .. 49

1. Introduction

Why another programming language? Don’t we
have enough of them?

Well, let us try this real world experiment. Go to the
best programmer you know. Pick the simplest
formula you can think of: E=mc2. Ask how the
Energy (E) can be calculated, for a mass (m) of 1kg,
2kg, 3kg,… 10kg and for a constant Speed of Light
(3x10^8m/s). Let us just watch the programmer for
what happens next. Yes, go ahead and start a stop
watch!

It is likely that the programmer would pull up a
spreadsheet, and type formulae notations into the
document such as on the right, and within a minute
or so, give you the answers.

C =3*10^8

M

1 =D5*E3^2

=D5+1 =D6*E3^2

=D6+1 =D7*E3^2

… …

=D12+1 =D13*E3^2

=D13+1 =D14*E3^2

Or maybe, the programmer would make a program,
in some computer language to do this, and will
come back to you in about an hour!

Today, an ordinary computer can do billions of
operations per second! And even with the best
techniques, translating from our human language to
computer language takes minutes or hours even for
the simplest of equations! This clearly shows the biggest
problem with the current state of the art computer human
interaction.

That is why we created a simple language for you
and the machine called:

z^3.

2. What is z^3?

z^3 is a general purpose language that is easy to
write and natural to read, powered by high
performance, scalable, computing constructs which
unlimits thinking and expression. z^3 console is
launched from ZCubes platform on any HTML5
enabled browser.

FIGURE 1 - FRACTAL PATTERN

GENERATED BY USING Z^3.

In the following sections of the document, z^3
specifics will be described in easy to follow
examples.

2.a. ZCubes Platform

ZCubes is a platform for users to create and
manipulate information. The website address is

The vision behind the z^3 language is

specifically to make human interaction

with computers convenient, simple and

elegant, at any level of complexity, all

immersed in a framework of immense

power.

ZCubes, Inc.

2

http://www.zcubes.com. To load the application
simply click on the Z icon, or directly visit it at
http://www.zcubes.com/zspace/zcubes.aspx.

Being an omni-functional platform, ZCubes allows
creation of documents with unparalleled power,
with almost any imaginable functionality provided
at your finger tips. Upon load, the ZCubes Platform
looks as below with a simple minimal interface:

Menu items can be accessed by clicking the Z
button.

ZAP is the desktop version of ZCubes that allows
deeper access to programming interfaces than the
web version. The methods to access z^3 in ZAP is
similar to the web-version.

2.b. Z^3 Programming Interface

The z^3 Code Cube Editor is a full-fledged
programming interface to interact with ZCubes
Logic. This code can be a part of the document if
kept for more advanced uses. This is the preferred
way to interact with z^3 within the ZCubes
interface.

To launch the code editor, click on icon on the
main menu of ZCubes Platform.

Upon entering code in z^3 code cube, and pressing
Run (F9), the results are displayed.

The code can also be interacted in Live Mode, and
selected text can be altered dynamically using Live
Scroll Bars. This feature is meant for advanced
users.

2.c. Z^3 Console

For simple interaction with the programming
interface, z^3 console may be used. z^3 console is

launched by clicking the icon on the bottom
right of the ZCubes platform. Please refer to
Appendix 1 for operators, symbols and notations
used in ZOS.

The ZOS Console to interact with z^3 can be
accessed using the command console button at the
extreme right bottom.

http://www.zcubes.com/
http://www.zcubes.com/zspace/zcubes.aspx

z^3

3

Commands can now be typed into the Enter ZOS
Command area as indicated below.

Entering command like 1..10@SIN and pressing
enter gives you the result in the window.

2.d. ZCubes – Selected Features

ZCubes is a 3D platform, which changes its nature
based on the user's perspective.

For example, it can function as a blackboard in one
moment, and a presentation tool in another
moment, or a spreadsheet in yet another moment.

The platform changes like a chameleon based on
the attributes users wish to have anytime. More
details on how to work with ZCubes is explained in
section 8.

2.e. Command Line Version of z^3

Server programs written as .z3 files can be run
using the z^3 command line compiler/interpreter.

Windows versions are available at the moment.
Mac and Linux versions will be following soon.
The latest version can be downloaded from
http://downloads.zcubes.com/zconsole/z3compiler.zip

After downloading, the zip file can z3compiler.exe
can be extracted a folder (such as c:\z3). This
program can run any .z3 files, at the OS Command
Line using command such as

➢ z3compiler -i myprogram.z3

Let us now dive into the z^3 language. Let us start
with data structures in the next chapter.

mailto:1..10@SIN
http://downloads.zcubes.com/zconsole/z3compiler.zip

ZCubes, Inc.

4

3. Data Collections

Most are familiar with matrices, and arrays are used
in languages to represent matrix like data structures.
An array is a simple data structure to create, collect
and manage data. z^3 transforms conventional
arrays into something much more powerful called
Sets.

3.a. Sets

Sets are new data types used in z^3. These are arrays
(not necessarily rectangular) that are flexible in size,
shape, types and contents, which make them
extremely powerful. The term set is italicized
throughout the document for easy identification.

The following are notable properties of Sets,
compared to conventional arrays:

• Sets are unstructured arrays, of varied sizes
and types.

• Sets may contain other Sets of any complexity.

• Sets are enhanced with several member
functions1 in z^3.

For example, sets can be printed out with the built-
in member function print(), to get the internal
representation in z^3.

Set-based z^3 resolves complexity and scaling
issues, while achieving high-performance, extreme
flexibility or natural expressiveness.

3.b. Set – Simply a Collection of Data

Let us start with a simple example.

At the ZOS Console, right after the command
prompt indicated by , enter the command 1..3. Let
us use the member function .print() to display the
set representation in z^3.

1. 1..3.print()

1 A listing of these are given in Section 0

Appendix V Member Functions.

[1,2,3]

The “two dots” operator used in 1..3 creates a
simple set, with 3 integer elements (1 at index 0, 2
at index 1, and 3 at index 2 positions). Sets have
indexes starting at 0, which is a common practice in
C-like languages.

Once a set is created, various operations can be
performed on it. As you shall see later, the results of
many of these operations are also sets, which mean
we can continuously apply these operations until
desired results are achieved.

An interesting point to note is that the set 1..3 can
be implicitly declared without any extra word or
punctuations unlike most languages2.

It is also important to see the use of .. operator as a
technique to create a sequenced collection of
number values (from lower end 1 to upper end 3 -
in this case as a range). To create a set filled with a
series, the [] operator is not required. Hence,
whenever we use [] array operator along with ..
operator, it indicates a set of set(s). This is
effectively a set with index 0 containing three
elements (this inside element being similar to the
array in Example 1).

2. [1..3]

 1 2 3

This is clearer when we apply .print().

3. [1..3].print()

[[1,2,3]]

In the example above: the internal set representation
is displayed as [[1,2,3]].

A set can contain other sets (containing any type
of data) recursively (or one within the other
without limits), as in the following,:

2 Several Series Generation Techniques are detailed in
Appendix IV Series Generation

z^3

5

4. [2,4,1..3,2].print()

[2,4,

 [1,2,3],

2]

In this example more complex items (including a set)
is collected into one set: Location at Index 0 contains
integer 2, at Index 1 contains integer 4, at Index 2
contains a set, and at the location at the last Index 3
contains integer 2.

Sets created can then be operated on using functions
(or even sets of functions) using the @ operator as
shown below:

5. 1..3@COS

Number COS

1 0.5403023058681398

2 -0.4161468365471424

3 -0.9899924966004454

However, aggregate functions such as SUM should
be applied to the entire array, not to each element.

6. 1..3@SUM

 SUM

 1 1

 2 2

 3 3

In the example above, the result may appear
confusing at first, since SUM function is applied for
each set element, if we use the @ operator.

The following example shows the application of
function SUM() to a set (not separate elements). The
three elements of set are added, resulting in 6, the
expected answer.

7. SUM(1..3)

 6

Let us see another operator … (“three dots”) in
action.

8. 1...8

1 2 4 8

The “three dots” notation generates a set with 4
values, as a geometric series from 1 to 8 as 1, 2, 4, 8.
Another example below shows geometric series
from 1 to 30.

9. 1...30

1 2 4 8 16

Now let us look at more complex scenarios.

In the following, the “two dots” (..) operator is
compounded to make an even more powerful
expression:

10. 1..10..2

1 3 5 7 9

Here the first .. indicates a series from a start value
to an end value, and the second .. is used as an
increment operator. Hence, the result includes all
numbers from 1 to 10, with an increment of 2.

4. Set – Object Representations

In z^3, {} is used for the creation of object data
structures (also known as associative or composite
set (4.g)).

The JavaScript associate array syntax and semantics
are kept as they are.

11. A={a:1..3,b:1..4}

{

 "a": [

 1,

 2,

 3

],

 "b": [

 1,

 2,

 3,

 4

]

}

ZCubes, Inc.

6

In Example 11, a set with two items (a as a set of 3
integer values, and b with another set of 4 integers)
is dynamically created.

By simply using = (as assignment operator), A is
defined as a variable, which now stores an associative
set, which can then be referenced as below.

12. A.a

1 2 3

Now A.a refers to the attribute a of the newly
created variable A. Likewise, A.b will display the
contents of item b of variable A.

4.a. Set – Complex Set Layouts

Now, consider a simple set of three elements
(equivalent to 1..3):

13. [1,2,3]

1 2 3

A more complex layout of a similar set is given
below, where 1 and 2 are in one element (stored as
a sub set) of the new set.

14. [1..2,3]

 1 2

 3

Examples 15 to 18 below show slight variations on
how non-regular layouts of set elements can be
defined.

15. [1,2..3]

 1

 2 3

16. [1..3,1..3]

 1 2 3

 1 2 3

17. [1..2,1..5]

 1 2

 1 2 3 4 5

18. [1,1..2,4]

 1

 1 2

 4

These examples clearly demonstrate that using clear
and elegant operators in z^3 (such as .. and …),
simple, consistent and powerful structures can be
created.

4.b. Matrix – as a Set of Set(s)

Arguably, a matrix (which can be represented as a
Set of Set(s)) is one of the most frequently needed
and useful data structures in programming.

A table can be visualized as an example of a matrix
– such as a table containing rows and columns in a
database, or a simple table with rows and columns
in a simple document or the tabular grid(s) in
spreadsheets.

In mathematical terminology, matrix definitions
and usage are very common - such as identity
matrix, diagonal matrix, sparse matrix, and so on.
Hence, operations on matrices are provided by z^3
using a rich set of operators and functions.

4.c. Matrix Operator(||)

Matrix construction can be done with the ||
operator. For example, creation of a 4x4 identity
matrix can be done with the following simple
notation:

19. |4|

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

|4| as it is displayed above gives a 4 by 4 identity
matrix by definition. Note that the matrix operator
|| is used here for both matrix declaration and
initialization.

If only one dimension is given, it is assumed that the
matrix requested is an identity matrix.

z^3

7

This highlights the simple and minimalist style
provided by z^3 throughout. Similarly, |4,2|
constructs a 4x2 matrix.

20. |4,2|

0 0

0 0

0 0

0 0

Similarly, |4,2,2| constructs a 4x2 matrix, with each
cell having 2 values, all initialized to zero:

21. |4,2,2|

The variations of matrix construction can be seen
in the following examples.

The notation inside matrix definition can be with
commas, the letter x, or a simple space.

22. |2x2|

0 0

0 0

A square matrix of 2 by 2 with initial values 0, is
given by this notation.

23. |3x3|

0 0 0

0 0 0

0 0 0

Here a square matrix of 3 by 3 with initial values 0
is obtained. Similarly, you can define |4x2| or
|2x4| as given below.

24. |4x2|

0 0

0 0

0 0

0 0

25. |2x4|

0 0 0 0

0 0 0 0

Now, let us look at some more advanced examples.

The example above gives a zero-filled 2 by 2 by 2
matrix (i.e., a matrix of 2 by 2, with each element
containing a zero-filled 2-element matrix).

26. |2x2x2|

0 0

0 0

0 0

0 0

The following gives a zero-filled matrix of 2 by 2
with 3 elements each.

27. |2x2x3|

0 0 0

0 0 0

0 0 0

0 0 0

28. |2x3x3|

 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ZCubes, Inc.

8

The matrix notation can scale-up for more complex
uses, and for any size and level of dimensions.

4.d. Set input to Functions

The simplest case is SUM of set 1,2,3 is calculated
by the following:

29. SUM 1..3

6

In the following Example 30, the set 1..3 and 2..4 are
passed to the function SUM, and it gives the sum of
all the numbers in both set. Compare this later,
against the combinatorial arguments applied to
functions (detailed in Section 4.f.i below).

The following Commands (30, 31, 32) calculate the
SUM of all parameters (each of which may be a set
containing a series) provided in each case.

30. SUM 1..3 2..4

15

which is the same as:

31. SUM(1..3,2..4)

15

32. SUM 1..3 2..4 1..4

25

We can have any number of arguments to aggregate
functions.

Commas and parenthesis can be omitted for
simpler calls. For more complex calls, commas and
parenthesis may be required to avoid ambiguity.
However, it is always recommended use the
brackets to avoid confusing situations.

3 x and y represent variables from sets on each side of the
binary operation. x and y can be replaced by any two names
for the variables.

4.e. | | Binary Operation

The binary operation with matrix operator | |,
called the “two bars” operator, is simple and natural
to use.

Two matrices of compatible sizes can be operated
on with matrix operations, such as |+|, |-|, |*|,
and |/|, as given below.

33. [1,2,3]|+|[1,2,3]

 2 4 6

34. [1,2,3]|-|[1,2,3]

 0 0 0

35. [1,2,3]|*|[[1],[2],[3]]

 14

36. [1,2,4]|/|[1,1,2]

 1 2 2

37. [[2],[2],[2]]|*|[1,2,3]

 2 4 6

 2 4 6

 2 4 6

Also the two bars of this operator can brace any
arbitrary function or operator.

Examples 38 to 41 show combining of two matrices
using a simple function represented with x and y,
provided in between the | | operator3.

38. 1..3|x+y|3..5

4 6 8

z^3

9

39. 1..3|x*y|3..5

3 8 15

40. 1..3|(x^2+SIN(y))|3..5

1.1411200080598671 3.2431975046920716 8.041075725336862

41. 1..3|SIN(x)+y|3..5

3.8414709848078963 4.909297426825681 5.141120008059867

4.e.i. MEMBER FUNCTIONS OF SET

A variety of useful and powerful member functions
(listed in 0

Appendix V Member Functions) are provided for
sets. Examples include, .print, .$, .index, .tenth, .random,
etc.

By convention, member functions are generally in
all lowercase, while primary functions are generally in
all uppercase. These member functions are invoked
using dot-notation, like most conventional object-
oriented languages.

42. |4x2|

0 0

0 0

0 0

0 0

For example, .transpose() is a member function that
will return the transpose of the marix.

43. |4x2|.transpose()

 0 0 0 0

 0 0 0 0

44. |3x3|.random(3)

0.4868065193295479 1.9101847931742668 0.25111658102832735

0.5587615873664618 0.26558934850618243 2.996888898080215

0.9493648773059249 2.7146050329320133 2.2170031929854304

With the simple notation above, a 3x3 matrix is
created, and filled with random numbers up to 3.
The following shows the use of .fillwith() to fill the
dynamically created matrix of size 3x3.

45. |3x3|.fillwith(8)

8 8 8

8 8 8

8 8 8

Note that in the case above all cells are filled with 8,
and in the case below a series of numbers from 1..9
are used.

46. |3x3|.fillwith(1..9)

1 2 3

4 5 6

7 8 9

Again, matrix dimensions can be given implicitly
(such as |2| for a |2x2| matrix).

Functions like random(), deal(),and many other
available functions listed in the Section 0

Appendix V Member Functions can be used to
manipulate sets.

47. |2|.deal()

0.44067314197309315 0.14973507658578455

0.15162911941297352 0.7144281121436507

48. |2x3|.deal()

0.24147144774906337 0.4198728590272367 0.07390831736847758

0.48515111417509615 0.0688244975153704 0.28236311418004334

49. |3x3|.random(3)

creates a 3 by 3 set and fills it with random numbers
with values upto 3.

50. A1=|2x2|.fillwith(3..6)

3 4

5 6

The .fillwith() member function is used to fill a 2 by
2 matrix with numbers 3, 4, 5, and 6.

The member function det calculates the determinant
of a Matrix.

ZCubes, Inc.

10

51. A1.det()

-2.000000000000001

Note that the simple function DET() and det() also
can be invoked to calculate the determinant of a
Matrix.

52. det(A1)

-2.000000000000001

The statement above will calculate the determinant
of the matrix A1 created in the previous step
(Example 50).

53. IM(3).across(IM(3))

The .across() member function of set is powerful way
to operate on two matrices, cell by cell. The result
of this operation applies the operation among
EVERY combination of cells among the matrices4.

Even when we graduate into more complex
combinations of computational constructs, the
language keeps its fundamental simplicity and
consistency. Looping construct is rarely needed in
z^3, as functions can be applied iteratively with

4 This is similar to the TENSOR product of matrices. Here
it simply provides the row column .index() as result.

implicit initialization (and increments) in a natural
order and minimalistic style.

While set and functions can be used in very rich ways
with z^3's syntactical simplicity, traditional
programming language syntax and style also can be
used. This is beneficial for backward compatibility
and for creating clever new possibilities of mixing
traditional and newer styles.

4.f. @ - Applied To Operator

To apply a function or set of functions to a set of
values, we use the APPLIED TO operator,
indicated by @.

54. 1..360@DSIN

gives you a list of SIN(x) values for input ranging
from 1 to 360.

The @ operator can be a powerful ally when mixed
with the concept of Combinatorial Arguments detailed
below.

4.f.i. COMBINATORIAL ARGUMENTS

The @ operator differs from a simple call of a
function on a set with a simple twist. The @
operator treats input data set as Combinatorial Set.

That is, in [1..4,2..3]@SUM, the SUM function is
applied to COMBINATIONS of values in the
two sets, namely [1,2,3,4] and [2,3] (denoted by
1..4 and 2..3).

Note that this is not the same as the set
[[1,2,3,4],[2,3]] being treated as input to the SUM
function. The following example makes this clear:

55. [1..4,2..3]@SUM

 - SUM

 1 2 3

 1 3 4

 2 2 4

 2 3 5

 3 2 5

z^3

11

 3 3 6

 4 2 6

 4 3 7

Every combination from each set 1..4 and 2..3 are paired
as parameters into the SUM function in the listing
above. This powerful function enables users to
avoid loop-in-loop constructs that are often seen in
C-like programming (e.g., for i=1..4 and for j=2..3).

By extension, combinatorial arguments can be
extended to inner loops of ANY depth (i, j, k, l, m,
… etc)

We can also reverse two sides of the @ operator, as
given below where the function SUM is applied to
the combinatorial data given on the right, giving the
same result as Example 55.

56. SUM@[1..4,2..3]

Compare this with Example 31, which is similar but
with simple application of SUM to the full set of
input, without any combinatorial loop.

4.f.ii. APPLYING COMBINATORIAL SET TO SET OF

FUNCTIONS

In z^3, data sets can be collected into any number of
set or combinations, and applied to any number of
functions. It does not matter whether data or
functions are given first.

The following examples shows this expressive
power of z^3, with data and/or functions separated
by comma, which behaves as a list operator.

57. [1..4,2..3]@[SUM,AVG]

 - SUM AVG

 1 2 3 1.5

 1 3 4 2

 2 2 4 2

 2 3 5 2.5

 3 2 5 2.5

 3 3 6 3

 4 2 6 3

 4 3 7 3.5

The inputs are generated and applied in a natural
order iteratively. This makes z^3 keep its readable
form, without needing a lot of complex looping
expressions.

4.f.iii. SIMPLE FUNCTION REPRESENTATIONS

Functions can be made on the fly using expressions
within quotes as given below (example: "x^2+5*y")

58. [1..4,2..3]@[SUM,AVG, "x^2+5*y"]

59. [1..4,2..3]@[SUM,AVG,"x^2+67*y","SIN(COS(z

))"]

Here, the data set on the left are passed to the set of
functions listed on the right.

In the functions that are expressed as strings such
as in ("x^2+67*y") in Example Error! Reference
source not found., the symbols x and y represent
the first and second of the combinatorial
arguments.

This feature allows users to express content of a
function in the most natural manner, without
complex function declaration decorations.

4.f.iv. EASY MULTI-LINE REPRESENTATION OF

Z^3 CODE

Note that code can be split into multiple lines (using
the Shift+Enter key) in the ZOS platform editor, as
given in the Commands 60 and 61.

ZCubes, Inc.

12

60. ARRAY(2,2,2)

 .merge(

 ARRAY(2,2,3),

 [SUM,AVG,"x+y^2-1"]

)

The examples above indicate .merge() member
function, that operates on two sets (one on the left,
and one as a parameter), merged with the functions
listed as second parameter of the member function.

In the Example 61, .rand() function fills the set
created using the ARRAY function. Then the
across() operation takes each such cell combination
from each matrix, and then applies the list of
functions [SUM, AVG] given as the second
parameter.

61. ARRAY(2,2,2)

 .rand()

 .across(

 ARRAY(2,2,3)

 .rand(),

 [SUM,AVG]

)

The partial output is given below.

4.f.v. USING || AS "SUCH THAT" BOOLEAN

EXPRESSIONS

We can check a set against logical expressions, like
in the following examples:

62. 4..8|x>5|

false false true true true

Here, the range of values is tested for a logical
conditional test, to give truthiness of the check in a
simple set series.

In Example 62, the set 4..8 is passed on to the check
x>5. The result is a Boolean set of true and false.

63. 1..100|x>5?x:55|

In Example 63, 1..100 is passed on to the check x>5.
The result is the value itself or 55, based on the
result of the check on each specific element.

It is possible to compound conditions in a
traditional sense easily with logical operands like
&& (and logical check) as follows:

64. 1..4|x>2&&x<4|

false false true false

4.g. Associative Set/Composite Set As
Objects

Object instances can be expressed easily using
simple implicit notation. There is no need for
explicit constructors or definitions as may be required in
conventional object oriented languages.

65. A1={"a":5, "b":2,

"c":"something"}

{

 "a": 5,

 "b": 2,

 "c": "something"

}

A1 is an instance of Object, with initial values given,
in lines with Object-Oriented (OO) terminology.
The qualification of members (whether it be a value
or a function) is coded with traditional (.) operator.
The result is an object meant for further processing.
However, members of this object are now
accessible using A1.a. For example:

66. A1.a

 5

z^3

13

67. A1.b

 2

68. A1.c

 something

It is also possible to use member names in quotes
as indexes, as given below:

69. A1["a"]

 5

70. A1["b"]

 2

71. A1["c"] ="anything"

 anything

The following example demonstrates these
properties:

72. factorial(5)

 120

The qualified member is used as an argument to a
function:

73. factorial(A1.a)

120

Assignments are straightforward. The type of the
variable value is taken implicitly from the right hand
side (RHS) value.

The variable represented by the left hand side
(LHS) name, is dynamically recast to the type of the
assigned new value.

For example, in the object A1, c which was
initialized as a string before, can now be used as a
place holder for a function:

74. A1.c=function(a){return(a+8)}

(a) 1

The output indicates that this is a function with a
single parameter a.

Now the A1.c represents a function, which can be
called as given below.

75. A1.c(3)

 11

Similarly, b in A1 can be assigned to the SIN
function with no extra coding:

76. A1.b=SIN

Now, we can call A1.b as a function, which then
gives the SIN value of 30, in radians.

77. A1.b(30)

 -0.9880316240928618

A similar example of object assignment and
member access is given below.

78. B1={"aa":2, "f1":"apple",

"f2":"peach"}

{

 "aa": 2,

 "f1": "apple",

 "f2": "peach"

}

The members can be qualified with the initial LHS
ids for reference, as usual:

79. B1.aa

 2

80. B1.f1

 apple

81. B1.f2

ZCubes, Inc.

14

 peach

4.g.i. GLOBAL ASSIGNMENTS USING <<<

The following example demonstrates the use of
attribute assignment operator <<< to assign a set of
functions to an attribute of an operator:

82. ["orange"]<<<[[SIN,COS]]

 orange

Now this assigned a global variable called orange,
that now contains a set of functions SIN and COS.

Please note that SIN and COS take input in radians.
DSIN and DCOS take input in degrees.

This set of functions in orange is applied to a set of
numbers 1..4, in Example 83.

83. 1..4@orange

Also note that orange is now a global variable in the
environment for easy use (as a set or collection of
functions, which then becomes a powerful object to
use to apply multiple functions at once).

5. Functions

In most languages, a function like SIN takes one
input and gives a scalar output. In z^3, the same
SIN function behaves in more powerful ways. If
given a scalar SIN will give a scalar result like other
languages, but if given an arbitrary set of inputs, z^3
will give a similar set of outputs.

Now, more interestingly, functions can be:

(1) Simple member functions of a set, as
in objects as member
functions, or

(2) Set of functions, that provides an
elegant organization.

5.a. Set of Functions

It is possible to use the expression in (Example 84)
as a one line computation, or decomposed into
multi-line computation (Commands 85 and 86).

84. 1..4@["x^2", "x*2", "x+2"]

The example below, demonstrates the declaration
of three functions, each with one parameter x,
collected as a set and assigned to A for easy reuse.

85. A=["x^2", "x*2", "x+2"]

POWER(x,2) x*2 x+2

In z^3, the data provided to such sets of functions
can be a set (or set of sets) of any breadth and depth.

The set of three functions are now invoked on a
range of values 1..4 below:

86. 1..4@A

Note that explicit looping constructs are avoided.
The logic represented by the set of functions is
applied to each data value in a sequence 1..4.

This style of applying a set of data to a set of functions
demonstrates z^3's functional approach (i.e., writing
WHAT is to be computed, and hiding HOW it is
computed).

Most library functions in z^3,

evaluates to a scalar value or a Set

of values, as and when needed.

z^3

15

The built-in FOREACH function (same as FOR
function) can also be used to achieve combinatorial
arguments and set of functions in a straightforward
manner5.

87. FOREACH(1..2,2..4, "z=x*3*y")

x y z

1 2 6

1 3 9

1 4 12

2 2 12

2 3 18

2 4 24

It is clear that the data set given as arguments are
used from left to right6.

The first set 1..2 behaves as the outer loop index
values, and the secondary set 2..4 behaves as the
inner increments, for x and y values respectively,
which are associated from left to right.

88. FOR(1..2,2..4, "z=x*3*y")

x y z

1 2 6

1 3 9

1 4 12

2 2 12

2 3 18

2 4 24

As the following example clearly demonstrates that
FOREACH is a rich function that takes data set in
multiple forms, and sets of functions collected in a
set:

5 Since lowercase ‘for’ is a standard keyword in some
platforms, FOREACH function is provided to side-step any
conflict in case of case-sensitivity.

89. FOREACH(INTS(3),[SIN,COS])

90. FOR 1..3 SIN

The parenthesis and commas can be dropped as in
the previous example, if it would not cause a
syntactic ambiguity.

91. FOR 1..4 "x*x"

x TEMP17

1 1

2 4

3 9

4 16

5.b. Simple Reusable Function
Declarations

A function can be declared as follows:

92. Y1:=u*t+0.5*a*t*2

Function Y1 with parameters: (u,t,a) is defined

as u*t+0.5*a*t*2

6 Any extra parameters are simply ignored, while using the
matching values to compute the functions.

7 Please note that unnamed functions are given temporary
names (like TEMP1) in outputs.

ZCubes, Inc.

16

Instantly, a function Y1 is created, with parameter
u, t and a, with parameter 8 names which are
automatically detected by z^3, in order of their
appearance.

If there are similar names existing in the
environment, z^3 will rename the function.

5.b.i. COMBINATORIAL ARGUMENTS

The following gives an example of series and
combinatorial arguments being used to replace the use
of a spreadsheet to do such calculations!

93. FOR(1..3,2,3,Y1)

Let’s check what would happen if more data values
were provided as parameters, than that were defined
in the function Y1 (which expects only 3 parameters
u, t and a).

94. FOR(1..3,2,3,8,Y1)

As expected, the fourth parameter value 8 is ignored
and the computation is completed with the first
three parameters of the data set.

Data can be simply listed following the function
with a space as a separator as below.

8 Global variables can be accessed from the inside of simple
function definitions. However, to keep simplicity of variable
names in local scope, any global variable up to 3 characters

95. FOR 1..3 2 3 8 Y1

If the user prefers to list the data in a parenthesis,
data may be listed with a comma (,) operator as a
separator. Consider an example of counting of
PRIMES, up to a certain number. With z^3
notation, we can repeat this process for any set of
numbers. In the example below, series of odd
numbers (from 1 to 10) are created, and the count
of primes that are within 1 to that number are then
calculated.

96. FOR 1..10..2 "COUNT(PRIMES(x))"

The ranges can now be expanded from 1..10 to
1..100000..10000, demonstrating powerful ways of
combining z^3 notations to achieve complex
expressive calculations, without sacrificing
simplicity and scalability..

97.

FOR 1..100000..10000 "COUNT(PRIMES(x))"

in length referenced inside the body of the function would need
an _ (underscore) prefixed to its name.

z^3

17

5.c. Set $, $$, $$$ and $_ Member
Functions

A set of functions can be invoked in every element
in a set by using the powerful .$ (dollar) member
function.

98. EVENS(4).$("x+2")

2 4 6 8

In this case, four even numbers are generated by the
EVEN function, which are then incremented by 2.

99. 1..5.$("1/x")

1 0.5 0.3333333333333333 0.25 0.2

The above output lists the reciprocals of numbers
1..5.

Remember that .$ is not quite the same as .map
functions that you may be familiar with, since .map
operations only operate on the children in the first
level of the array or set. On the other hand, .$ operates
on every element in the set, recursively.

100. SUM(EVENS(4).$("x+2"))

 20

The result of .$ is also a set, and can be fed into
further member functions to operate on, such as
SUM shown above.

Now, consider the following command to add
numbers from 1 to 10.

101. SUM(1..10)

 55

The member function (.$_) (dollar-underscore) can be
used to apply an aggregate function (such as SUM)
to the entire set, resulting in a single functional
result.

102. 1..10.$_(SUM)

55

The member function (.$$) (dollar-dollar) applies the
set of functions provided on each row (by row) of the
set.

103. MAGICSQUARE(4).$$(SUM)

34

34

34

34

The member function .$$$ (dollar-dollar-dollar) works
along columns, compared to (.$$) that operates on rows.
The member function .$_ (dollar-underscore) function
works across the entire set.

104. 1..10.$_(SUM)

 55

5.d. Set Functions and Set Programming

The use of sets as collections of statements and
function calls creates an interesting possibility of
program segments that is self-explanatory.

105. V:=[a,b,[SIN(a),COS(b),SIN(b),COS(a)]]

Function V with parameters:(a,b) is defined

as [a,b,[SIN(a),COS(b),SIN(b),COS(a)]]

The above function definition creates a function

when called gives the input a and b, as well as the

result, all as ONE set in the output!

This creates the possibility of holding data sets that

carry inputs and outputs of a process for reporting

uses or further analysis. Such composites create a

rich expression possibility for calculations in z^3.

106. V(1,2)

Here, the results shows inputs 1 and 2 (a and b in
the set program), followed by the array of results from

ZCubes, Inc.

18

the the computation of the set of functions
[SIN(a),COS(b),SIN(b),COS(a)] in the set program.

Such functions defined as set, gives unique expression
power to programmers. In the example in Command
106, the input is effectively carried along with the
output.

Let us consider some powerful ways to create
functions.

107. F1:=[a+b,a-b]

Function F1 with parameters:(a,b) is defined as [a+b,a-

b]

The function F1 is now defined, and calling it is
simple.

108. F1 1 2

3 -1

Another example that demonstrates the expressive
power:

109. F2:=[a,b,a+b]

 Function F2 with parameters:(a,b) is defined as [a,b,a+b]

110. F2 5 2

5 2 7

111. F2(3,9)

3 9 12

112. F2 2*3 5

6 5 11

As can be clearly seen above, the outputs carry the
inputs as well as the results, creating absolutely
interesting possibilities of handling data, as well as
avoid unnecessary complexity in programming.

113. F3:=[SUM(a..b..c)]

 Function F2 with parameters:(a,b,c) is

defined as [SUM(FROMTO(CONCAT(a,b),c))]

This effectively creates a function F3 that can add
up series between a and b, of any interval c.

114. F3 1 10 2

 25

The sum of 1+3+5+7+9 is obtained as 25 by calling
F3 with the parameters 1, 10 and 2.

The following shows another interesting use of set
Programming, coupled with || function definition
(Section 4.e).

115. 1..4|x^2+x^3|

2 12 36 80

Here the function x^2+x^3 itself is a function
expression. The result of this function is applied on
the series 1 to 4.

5.e. Advanced computation of lists

Trigonometric calculations are useful in a wide
varied domains, such as electrical engineering, map
projections etc. These require computation of lists.
Series of values thus generated are heavily used
during further computation, as inputs, as well as
loop control variables; but most languages fail to
support quick and easy generation of common
collections and series.

z^3 makes the generation of such lists incredibly
easy, starting with x..y..z notation such as in 1..10..3.

Generation of commonly used angles, in radians or
degrees, can be easily achieved as given below.
Terms like DEG360BY45 can give easy listing of
360degrees divided by 45degree segments etc. for
easy use. Please note the use of the TRANSPOSE
operator ~, used here for vertical display of the
generated sets. Similarly rad2piby4 (case does not
matter) can be used to divide radians into
appropriate pieces. These generated values are
automatically enabled for units. It helps
tremendously with trigonometric calculations etc.

116. DEG360BY45~

z^3

19

0°

45°

90°

135°

180°

225°

270°

315°

360°

117. RAD2*PiBY4~

0㎭

1.5707963267948966㎭

3.141592653589793㎭

4.71238898038469㎭

6.283185307179586㎭

More examples and details of Series Generation are
given in Appendix IV Series Generation.

The series computed can be used as in cases like:

118. DEG360BY45@DSIN

Number DSIN

0° 0

45° 0.7071067811865475

90° 1

135° 0.7071067811865476

180° 1.2246467991473532e-16

225° -0.7071067811865475

270° -1

315° -0.7071067811865477

360° -2.4492935982947064e-16

5.f. Series computation

The design of z^3 attempts to provide natural
language interfaces, with terse and powerful
notations.

Hence SUM 1..4 can also be implied by the
following natural language expressions.

119. ADD 1 to 4

 10

1 to 4 implies all numbers from 1 upto 4 (i.e., 1, 2,
3 and 4).

Note that this is not the same as ADD 1 4 which
should give the result 5.

A series by an increment can be expressed using the
x to y by z notation.

120. ADD 1 to 4 by 2

4

Obviously, the series here can also be represented
as ADD(1..4..2)

6. Built-in Functions in z^3

z^3 has powerful prebuilt function libraries. This
collection is continuing to grow daily; and already
these number into the thousands.

These range from functions in Mathematical,
Statistical, Financial, Engineering, Medical,
Database, and many other domains.

Several of these standard library functions are
documented at http://wiki.zcubes.com

Consider some interesting available functions.

6.a. Permutations and Combinations

Permutation relates to the act of arranging all the
members of a collection into some sequence or
order; whereas Combination is a way of selecting
items from a collection, such that the order of
selection does not matter.

z^3 comes with functions to list permutations and
combinations of items, as well as techniques to
count and list them.

121. PERMUTATIONS(1..3)

http://wiki.zcubes.com/
https://en.wikipedia.org/wiki/Set_%28mathematics%29
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Ordered_set

ZCubes, Inc.

20

1

2

3

1

3

2

2

1

3

2

3

1

3

1

2

3

2

1

All possible permutations of 1, 2 and 3 are shown
above.

122. PERMUTATIONS(1..3,2)

1

2

1

3

2

1

2

3

3

1

3

2

All possible permutations of 1, 2 and 3, in sets of two
elements, are shown above.

123. COMBINATIONS(1..3)

 1

 2

 3

All possible combinations of 1, 2 and 3, of one
element are shown. Next, all possible combinations
of 1, 2 and 3, of two elements are shown.

124. COMBINATIONS(1..3,2)

1 2

1 3

2 3

6.a.i. COMMON NUMBER SERIES

EVENS is a function that returns x even numbers,
for a requested x.

125. EVENS 4

0 2 4 6

The series thus generated can be input to functions
as SUM, or vice versa.

126. SUM(EVENS(4))

 12

127. EVENS(SUM(4))

0 2 4 6

The following creates a jagged collection of 1, 2, 3
and 4 even numbers.

128. EVENS(1..4)

6.a.ii. SIMPLE NUMBER STATS

STATS is a powerful function that applies a lot of
Statistical Functions on a series of numbers.

129. STATS(1..100)

COUNT 100

SUM 5050

AVERAGE 50.5

VAR 841.6666666666666

STDEV 29.011491975882016

VARP 833.25

STDEVP 28.86607004772212

MIN 1

MAX 100

MEDIAN 50.5

z^3

21

MODE #N/A

Let us look at a larger collection of numbers.

130. STATS(1..1000)

COUNT 1000

SUM 500500

AVERAGE 500.5

VAR 83416.66666666667

STDEV 288.8194360957494

VARP 83333.25

STDEVP 288.6749902572095

MIN 1

MAX 1000

MEDIAN 500.5

MODE #N/A

It scales-up for more complex needs easily, by
considering the STATS function call for 1, 301, 601,
and 901 in a series:

131. FOR 1..1000..300 "STATS(1..x)"

Now, Example 96 is scaled below to a larger range
of data.

132. FOR 100..1000..300

"COUNT(PRIMES(x))"

x TEMP1

100 25

400 78

700 125

1000 168

z^3 scales-up to handle larger range (though limited
by your computers capacity), as shown in the
following computation:

133. FOR 1...10000000

"COUNT(PRIMES(x))"

x TEMP1

1 0

2 1

4 2

8 4

16 6

32 11

64 18

128 31

256 54

512 97

1024 172

2048 309

4096 564

8192 1028

16384 1900

32768 3512

65536 6542

131072 12251

262144 23000

524288 43390

1048576 82025

2097152 155611

4194304 295947

8388608 564163

Note the “three dots” operator between 1 and
10000000, which signifies the generation of a
geometric series.

Please try:
 FOR 1...10000000 "COUNT(PRIMES(x))"

as a first attempt to test the capacity of your device.

6.a.iii. SET OPERATIONS

Several operations are provided to operate on sets.
Some examples with set-theoretical operations are
given below:

134. UNION 1..3 4..5

 1

 2

 3

 4

 5

135. DIFFERENCE 1..5 1..3

 4

 5

136. INTERSECTION 1..5 1..3

 1

 2

 3

ZCubes, Inc.

22

7. z^3 Simple Examples

z^3 language, while being based on global
standards, is unlimited in scope by being open to
extension. It does not take a single approach to
problem expression and solution, but many
approaches, which result in highly flexible possibilities
of terse and verbose expressions based on user skill
and style.

Several example real-world problems are described
in sections below.

7.a. Sets and Related Structures

7.a.i. MATRICES

Set (or sets of sets) of complex dimensions can
represent conventional matrix definitions in an
effortless manner. z^3 provides a collection of
powerful matrix functions and manipulation
capabilities.

7.1.1.1. Matrix Generation

With z^3, a wide variety of matrices can be
generated with ease.

In Section 4.c (Matrix Operator(||)), generation of a
simple set is described. For example,

137. |4,2|

 0 0

 0 0

 0 0

 0 0

|4,2| generates a simple 4x2 matrix.

Known types of matrices of required size can be
generated using the MATRIX (or MATRIXWITH)
function. For example, it is very common to fill a
matrix with “positive”or “zero” or “negative”
values as needed as follows:

138. MATRIXWITH(4, "positive")

 42.675436730496585 20.18217903096229 42.50673889182508 9.618869726546109

 91.79219712968916 92.56706861779094 79.73511724267155 26.351151429116726

 84.20511102303863 17.219695332460105 34.37458740081638 37.503470783121884

 1.1728932848200202 10.188973206095397 36.16558900102973 27.639518934302032

139. MATRIXWITH(4, "negative")

-42.675436730496585 -20.18217903096229 -42.50673889182508 -9.618869726546109

 -91.79219712968916 -92.56706861779094 -79.73511724267155 -26.351151429116726

 -84.20511102303863 -17.219695332460105-34.37458740081638 -37.503470783121884

-1.1728932848200202 10.188973206095397 -36.16558900102973 -27.639518934302032

140. MATRIXWITH(4, "zero")

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

 A matrix of size 4 of positive integers is
generated below.

141. MATRIX (4, "positive:integer")

 85 57 100 65

 47 100 48 86

 18 28 78 92

 95 2 35 100

Another example of a matrix of size 4 of negative
integers is equally easy.

142. MATRIX (4, "negative:integer")

 -100 -39 -76 -82

 -44 -32 -8 -4

 -36 -88 -73 -66

 -73 -87 -27 -25

Similarly, a matrix of 4x4 size of integers.

143. MATRIX (4, "integer")

 -2 -40 -64 -84

 88 88 -66 30

 66 -16 64 -20

 -45 96 88 -87

Similarly, a matrix of 4x4 size of Boolean values (0
or 1).

144. MATRIX(4, "logical")

z^3

23

 0 0 1 1

 0 1 1 0

 0 0 1 0

 1 0 0 1

145. MATRIX(4, "alternant",1..10,

"[i,j]")

 0 0 0 1 0 2 0 3

 1 0 1 1 1 2 1 3

 2 0 2 1 2 2 2 3

 3 0 3 1 3 2 3 3

146. MATRIX(4, "alternant",1..10, "i-

j")

 0 -1 -2 -3

 1 0 -1 -2

 2 1 0 -1

 3 2 1 0

More special matrices can also be generated as
described below below.

7.1.1.2. Hilbert Matrix

The Hilbert matrix is a square matrix with entries
being the unit fractions.

For example, Hi,j = 1 / i+j-1.

So, 2x2 Hilbert matrix is

1 1/2

1/2 1/3

For n, it is a square matrix nxn with the values as

1, 1/2, 1/3, 1/4, . . ., 1/n

1/2, 1/3, 1/4, 1/5, . . ., 1/n-1

1/3, 1/4, 1/5, 1/6, . . ., 1/n-2

. . .

1/n, 1/n-1, 1/n-2, . . ., 1/2n-1

In z^3, simply calling MATRIX function with
arguments “hilbert” and size will provide the result:

147. MATRIX("hilbert",2)

 1 0.5

 0.5 0.3333333333333333

148. MATRIX("hilbert",4)

7.1.1.3. Hermitian Matrix

Hermitian Matrix (or self-adjoint matrix) is a square
matrix with complex entries that is equal to its
own conjugate transpose, that is, the element in
the i-th row and j-th column is equal to the complex
conjugate of the element in the j-th row and i-th
column, for all indices i and j: In mathematical
representation:

 or

Here is an example:

149. MATRIX("hermitian",3)

74 79+ⅈ39

96+ⅈ36

79-ⅈ39

52 -20+ⅈ48

96-ⅈ36

-20-ⅈ48

77

i. Hankel Matrix

The Hankel matrix (or Catalecticant matrix), named
after Hermann Hankel, is a square matrix with
constant skew-diagonals (positive sloping
diagonals), e.g.

150. MATRIX("hankel",3)

0.5082476452709008 0.8938533218532763 0.8938533218532763

0.8938533218532763 0.8938533218532763 0.5082476452709008

0.8938533218532763 0.5082476452709008 0.17844765487260217

7.a.ii. TOEPLITZ MATRIX

The Toeplitz matrix or diagonal-constant matrix,
named after Otto Toeplitz, is a matrix in which
each descending diagonal from left to right is
constant. The Hankel matrix above is closely related
to the Toeplitz matrix (which is an upside-down
Hankel matrix).

http://en.wikipedia.org/wiki/Hilbert_matrix
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Complex_conjugate
http://en.wikipedia.org/wiki/Complex_conjugate
http://en.wikipedia.org/wiki/Hankel_matrix
http://en.wikipedia.org/wiki/Hankel_matrix
http://en.wikipedia.org/wiki/Hermann_Hankel
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Toeplitz_matrix
http://en.wikipedia.org/wiki/Toeplitz_matrix
http://en.wikipedia.org/wiki/Otto_Toeplitz
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Toeplitz_matrix

ZCubes, Inc.

24

For instance, the following matrix is a Toeplitz
matrix in z^3:

151. MATRIX("toeplitz",3)

0.08108029455585108 0.7705726775647403 0.06162740141092149

0.08108029455585108 0.08108029455585108 0.7705726775647403

0.7705726775647403 0.08108029455585108 0.08108029455585108

152. MATRIX("toeplitz",4,1..4)

1 2 3 4

1 1 2 3

2 1 1 2

3 2 1 1

7.1.2.1. Hadamard Matrix

Named after the French mathematician Jacques
Hadamard, a square matrix whose entries are either
+1 or −1, and whose rows are mutually orthogonal,
is called a Hadamard Matrix.

In geometric terms, this means that every pair of
two different rows in a Hadamard matrix represent
two perpendicular vectors.

In combinatorial terms, it means that every pair of
rows have matching entries in exactly half of their
columns and mismatched entries in the remaining
columns.

153. MATRIX("hadamard",3)

1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

7.1.2.2. Vandermonde Matrix

Vandermonde Matrix, named after Alexandre-
Théophile Vandermonde, is a matrix with terms of
a geometric progression in each row, i.e.,
an m × n matrix.

In z^3, the following is an example of
Vandermonde matrix:

154. MATRIX("vandermonde")

1 0.098985958378762

 0.009798219956162004

1 0.8950120634399354 0.801046593703011

1 0.9542551881168038 0.9106029640478366

155. MATRIX("vandermonde",4,2)

1 2 4 8

1 2 4 8

1 2 4 8

1 2 4 8

156. MATRIX("vandermonde",4,1..4)

1 1 1 1

1 2 4 8

1 3 9 27

1 4 16 64

7.1.2.3. Upper and Lower-Triangular matrix and Symmetric matrix

In Upper Triangular Matrix, all elements under its
diagonal are zero. In Lower-Triangular Matrix, all
elements over the main diagonal are zeroes. In
Symmetric Matrix both sides of the diagonal
elements are filled, but with elements around the
main diagonal symmetric in value.

157. MATRIX("upper-triangular",6)

-20 -74 9 66 32 57

0 52 -47 60 26 -87

http://en.wikipedia.org/wiki/Hadamard_matrix
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Jacques_Hadamard
http://en.wikipedia.org/wiki/Jacques_Hadamard
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Orthogonal
http://en.wikipedia.org/wiki/Perpendicular
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Alexandre-Th%C3%A9ophile_Vandermonde
http://en.wikipedia.org/wiki/Alexandre-Th%C3%A9ophile_Vandermonde
http://en.wikipedia.org/wiki/Matrix_(math)
http://en.wikipedia.org/wiki/Geometric_progression
http://en.wikipedia.org/wiki/Symmetric_matrix
http://en.wikipedia.org/wiki/Triangular_matrix
http://en.wikipedia.org/wiki/Symmetric_matrix

z^3

25

0 0 -28 -31 -49 -70

0 0 0 -18 -70 63

0 0 0 0 59 9

0 0 0 0 0 69

158. MATRIX("lower-triangular",6)

-4 0 0 0 0 0

10 5 0 0 0 0

-40 -82 10 0 0 0

-7 100 99 -74 0 0

34 39 46 17 87 0

68 -4 65 57 0 10

159. MATRIX("symmetric",6)

15 95 -31 30 -5 14

95 -13 98 -35 70 -33

-31 98 -29 48 87 90

30 -35 48 73 16 -72

-5 70 87 16 98 68

14 -33 90 -72 68 97

The hyphen between upper-triangular is optional.

7.1.2.4. Pascal Matrix

The elements of the symmetric Pascal matrix are
the binomial coefficients, i.e.

In other words:

160. MATRIX("pascal",5)

 1 1 1 1 1

 1 2 3 4 5

 1 3 6 10 15

 1 4 10 20 35

 1 5 15 35 70

7.a.iii. MATRIX SIZES

SIZE function can be used to find the size of sets.

161. SIZE(|4x5|)

 4 5

A second parameter can be used to indicate the size
is to be obtained in a specific dimension.

162. SIZE(|2x3|,0..1)

Ther result gives the size along dimensions 0 and 1,
of an array of size 2x3.

7.a.iv. MATRIX OPERATIONS

The following code is used to generate a 3 by 3 set
filled with 3. The RANDOM function is then called
on each of the members using the $ function fills
each element with random values within 0 through
3. As you can see MX is then assigned with the
result.

163. MX=ARRAY(3,3,3)

3 3 3

3 3 3

3 3 3

164. MX=ARRAY(3,3,3).$(RANDOM)
0.10359240020625293 0.08560038451105356 0.39424868300557137

0.7169222580268979 2.0910016105044633 0.5476922818925232

0.12873755511827767 0.31074305064976215 2.0048518725670874

The matrix MX is now added along a row using
MROWOP using the + operator.

165. MROWOP(MX,"+",true)

0.5834414677228779 0.10359240020625293 0.1891927847173065

 0.5834414677228779

3.3556161504238844 0.7169222580268979 2.8079238685313612

 3.3556161504238844

2.4443324783351272 0.12873755511827767 0.4394806057680398

 2.4443324783351272

This result is interesting, as much as it is powerful.
The true value as the second parameter indicates that
the cumulative and running result as each element is

http://en.wikipedia.org/wiki/Binomial_coefficient

ZCubes, Inc.

26

operated on (as it applies columns in each row) are
listed. Only cumulative result is provided if the third
parameter is empty is false.

166. MROWOP(MX,"+",false)

0.5834414677228779 3.3556161504238844 2.4443324783351272

The same can be done for each column, with the
top row indicating the cumulative result, and rows
below this row showing results (when each element
was added by row to the next element) in the
column.

167. MCOLOP(MX,"+",true)

0.9492522133514285 2.487345045665279 2.946792837465182

0.10359240020625293 0.08560038451105356 0.39424868300557137

0.8205146582331508 2.176601995015517 0.9419409648980945

0.9492522133514285 2.487345045665279 2.946792837465182

168. MATRIXPACK(1..5,2)

1 2

3 4

5

MATRIXPACK splits the matrix into elements of
sizes given as parameter. Here it divides matrix MX
into pieces of 2 elements.

7.a.v. MATRIX ARITHMETIC OPERATIONS

Simple Matrix addition, multiplications, negation,
etc. can be obtained using MATRIX related
functions such as below.

169. MMULT([1,2,3],[[4],[4],[2]])

18

Note the use of brackets for the vertical matrix as
in [[4],[4],[2]] in Example 169.

1..3**3 is a simple notation to duplicate a set, by a
requested number of times, indicated by **. In this
case, 1..3 will be replicated 3 times.

MMULT then operates on the two sets as below.

170. MMULT(1..3**3,1..3**3)

 6 12 18

 6 12 18

 6 12 18

MMULT, does scalar multiplication of the
argument is a scalar, with the matrix that is provided
in the other argument.

171. MMULT(1..10,2)

MATRIXADD conducts simple addition of
matrices.

172. MATRIXADD(1..5,1..5)

MATRIXNEGATE multiplies each element by -1,
or effectively negates the elements.

173. MATRIXNEGATE(ARRAY(4,4,10))

 -10 -10 -10 -10

 -10 -10 -10 -10

 -10 -10 -10 -10

 -10 -10 -10 -10

MEQUAL checks each element in a set to see if it
matches a provided value, in this case a 10x10
matrix filled by 2, is checked against 2.

174. MEQUAL(ARRAY(10,10,2),2)

true

7.b. Vector Operations

Dot Product or Scalar Product of matrices can be
conducted on vectors represented as matrices or sets
using the DOTPRODUCT (also called
SCALARPRODUCT) function.

175. DOTPRODUCT(1..3,4..6)

32

Similarly, Cross Product or Vector Product of matrices
can be conducted on vectors represented as

z^3

27

matrices or sets using the CROSSPRODUCT
function.

176. CROSSPRODUCT(1..3,4..6)

 -3 6 -3

The functions CROSSPRODUCT and
VECTORPRODUCT are the same.

177. VECTORPRODUCT(1..3,4..6)

 -3 6 -3

7.b.i. MATRIX DETERMINANTS

In linear algebra, the determinant is a special value
associated with a square matrix.

For example, in a matrix that represents the
coefficients of a System of Linear Equations, its
determinant provides important information about
the matrix. The system has a unique solution exactly
when the determinant is nonzero; when the
determinant is zero there are either no solutions or
many solutions.

Determinants occur throughout mathematics. In
some cases they are used just as a compact notation
for expressions that would otherwise be unwieldy to
write down.

For instance, the determinant of the matrix:

178. A = [2 2 1;1 3 4; 2 6 2]

2 2 1

1 3 4

2 6 2

|A| has the value as:
(2x3x2 + 2x4x2 + 1x1x6) – (1x3x2 + 2x4x6
+ 2x1x2) = -24

In z^3, the determinant of a matrix A is denoted as
det(A), det A, or DET(A).

179. det(A)

-24

In z^3, determinants of any size square matrix is
easily calculated, as for the matrix x below
(generated using deal member function).

180. x=|3|.deal()

181. det(x)

-0.036501362405503224

Determinant of an identity matrix is 1, as indicated
in Example 182.

182. det(IM(4))

1

The determinant of a randomly generated 3x3
matrix is given below.

183. det(|3x3|.deal())

-0.0306124444199811

7.c. Matrix Rotations

Matrix rotation can be achieved by the
MATRIXROTATE function.

184. MATRIXROTATE(|4|,1)

 0 1 0 0

 0 0 1 0

 0 1 0 0

 0 0 1 0

185. MATRIXROTATE(|4|,2)

 0 0 1 0

 0 1 0 0

 0 0 1 0

 0 1 0 0

186. MATRIXROTATE(|5|,4)

 0 0 0 0 1

http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Square_matrix#Square_matrices
http://en.wikipedia.org/wiki/Coefficients
http://en.wikipedia.org/wiki/System_of_linear_equations

ZCubes, Inc.

28

 0 1 0 0 0

 0 0 1 0 0

 0 0 0 1 0

 1 0 0 0 0

A simpler z^3 notation for the same is given below,
using member functions.

187. |5|.rotate(4)

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

7.c.i. SIMPLE MATRIX MERGING WITH

FUNCTIONS

188. ARRAY(10,10,10)

 .merge(ARRAY(10,10,10))

 .$(RANDOM).print()

Here two 10x10 sets, filled with 10 are merged cell
by cell and the result is merged together.

To enter lines with soft line-break, use Shift+Enter,
instead of simple Enter.

It makes it simple to provide member functions
indented under the main object as given above.

7.c.ii. ACROSS MATRICES MERGING WITH

FUNCTIONS

In z^3, .across() member function is a powerful
operation that applies a specific function or set of
functions on each pair of elements on the two input
matrices.

Consider a simple 3x3 identity matrix.

189. IM(3)

1 0 0

0 1 0

0 0 1

The .across() function applies SUM to the two
identity matrices.

190. IM(3).across(IM(3),SUM)

A more powerful example of applying a set of
functions (SUM and AVG in the following case) on
the each combination of elements of input matrices
is shown next.

191. IM(3)

 .across(

 IM(3),

 [SUM,AVG]

)

7.c.iii. QUICK MULTIPLICATION TABLES

Consider the following use of the across function to
generate a Multiplication Table in Command 192.

In this case, the .across function is used in such a way
as to operate on every pair of numbers between 1
an 10. This is a simple demonstration of the .across
operation, (which can also be used on an array of
functions as indicated previously) to create useful

z^3

29

collections of results, such as those that can be used
for contour plotting etc.

192.

1..10.across(1..10,PRODUCT).transpose()

Using the power of sets, you can get the
multiplication factors of any one number (using the
[] element accessing capability). For example, the
following command gets the multiplication table for
the number 6 (note the 0 based indexing of sets as
used).

193. 1..10

 .across(1..10,PRODUCT)

 .transpose()[0][5]

6

12

18

24

30

36

42

48

54

60

7.d. Puzzles and Other Interesting
Computations

There are several special problems and puzzles that
are pre-solved in z^3 for enthusiasts, to analyze
various case scenarios and to slice and dice such
results.

7.d.i. MAGIC SQUARE

In recreational mathematics, a Magic Square is an
arrangement of numbers (usually integers) on
a square grid, where the numbers in each row, the
numbers in each column, and the numbers in the
forward and backward main diagonals, all add up
to the same number.

A magic square has the same number of rows as it
has columns, and in conventional math notation,
"n" stands for the number of rows (and columns) it
has.

Thus, a magic square always contains n2 numbers,
and its size (the number of rows and columns it has)
is described as being "of the order n".

The smallest nontrivial case, a 3 × 3 grid that is a
magic square of order 3 is shown next.

194. MAGICSQUARE(3)

2 7 6

9 5 1

4 3 8

In z^3, magic squares of any size can be created
using the MAGICSQUARE function. The
parameter can be given as a series, such as
MAGICSQUARE(3..15) to have a series of
MAGICSQUAREs of sizes 3 to 15.

195. MAGICSQUARE(4)

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

The sum of every row, column and diagonal, which
should be a constant value, is called the Magic
Constant or Magic Sum, M. Every normal magic
square has a unique constant determined solely by
the value of n, which can be calculated using this
formula:

http://en.wikipedia.org/wiki/Recreational_mathematics
http://en.wikipedia.org/wiki/Magic_square
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Square_(geometry)
http://en.wikipedia.org/wiki/Magic_constant
http://en.wikipedia.org/wiki/Magic_constant

ZCubes, Inc.

30

The row wise and column wise sum of the magic
square elements show that for an m of 4 rows and
columns, 4*(4^2+1)/2 = 34 would be the magic
constant. Commands 196 and 197 indicate that row-
wise and column-wise summations of elements add
up to a Magic Constant of 34. The .$$ and .$$$
member functions of sets are used to compute the
row and column based sums.

196. MAGICSQUARE(4).$$(SUM)

34

34

34

34

197. MAGICSQUARE(4).$$$(SUM)

34

34

34

34

7.d.ii. N-QUEENS PUZZLE

Chess composer Max Bezzel published the Eight
Queens Puzzle in 1848. Franz Nauck published the
first solutions in 1850, and also extended the puzzle
to the n-queens problem, with n queens on a
chessboard of n×n squares. Since then, many
mathematicians including Carl Friedrich Gauss

have worked on both the eight queens puzzle and
its generalized n-queens version.

Eight queens puzzle is the problem of placing
eight chess queens on an 8×8 chessboard so that no
two queens attack each other. Thus, a solution
requires that no two queens share the same row,
column, or diagonal.

The eight queens puzzle is an example of the more
general n-queens problem of placing n queens on
an n×n chessboard, where solutions exist for all
natural numbers n with the exception of n=2
and n=3.

In computer programming, the solution to this
problem is considered a classic involving problem-
solving, algorithms, and data structures. This
approach has several applications in scheduling,
distributed systems, networking, etc.

There are two explicit solutions for n=4 and the
solutions can be obtained in z^3 as follows:

198. NQUEENS(4)

1

|_|Q|_|_|

|_|_|_|Q|

|Q|_|_|_|

|_|_|Q|_|

2

|_|_|Q|_|

|Q|_|_|_|

|_|_|_|Q|

|_|Q|_|_|

In z^3, the user can use the NQUEEN function in
several ways to get the solution, as well as explore
and discover patterns associated with these
solutions.

199. NQUEENS()

The result will be 92 solutions to 8Queens problem,
the first and last are given in the following:
1

|Q|_|_|_|_|_|_|_|

|_|_|_|_|Q|_|_|_|

|_|_|_|_|_|_|_|Q|

|_|_|_|_|_|Q|_|_|

http://en.wikipedia.org/wiki/Chess_composer
http://en.wikipedia.org/wiki/Max_Bezzel
http://en.wikipedia.org/wiki/Eight_queens_puzzle
http://en.wikipedia.org/wiki/Eight_queens_puzzle
http://en.wikipedia.org/wiki/Chess
http://en.wikipedia.org/wiki/Queen_(chess)

z^3

31

|_|_|Q|_|_|_|_|_|

|_|_|_|_|_|_|Q|_|

|_|Q|_|_|_|_|_|_|

|_|_|_|Q|_|_|_|_|

.

.

.

.

.

.

.

92

|_|_|_|_|_|_|_|Q|

|_|_|_|Q|_|_|_|_|

|Q|_|_|_|_|_|_|_|

|_|_|Q|_|_|_|_|_|

|_|_|_|_|_|Q|_|_|

|_|Q|_|_|_|_|_|_|

|_|_|_|_|_|_|Q|_|

|_|_|_|_|Q|_|_|_|

More interestingly, you can compute and get in a
range of data values for different sizes as follows:

200. NQUEENS(1..8)

It scales-up easily, and consider sizes of chessboards
with sizes 8..12.

201. NQUEENS(8..12)

The results of Example 201 range from 352
solutions for 8 queens upto 14200 Solutions for 12
queens. In simpler cases, solutions could be sparse
as follows.

202. 1..4@NQUEENS

1

1

|Q|

1 Solutions

2

0 Solutions

3

0 Solutions

4

1

|_|Q|_|_|

|_|_|_|Q|

|Q|_|_|_|

|_|_|Q|_|

2

|_|_|Q|_|

|Q|_|_|_|

|_|_|_|Q|

|_|Q|_|_|

2 Solutions

For practical purposes, the results become too large
when it gets to a size of 19 queens.

7.d.iii. BIRTHDAY PROBABILITY

In probability theory, birthday probability is a
simple yet interesting problem. The history of this
problem is obscure. Possibly, Harold Davenport
or Richard von Mises proposed what we consider
today to be the birthday problem.

This problem solves the probability of at least two
of the n people in a room sharing a birthday. In a
group of n people, there are 365n possible
combinations of birthdays.

The simplest solution is to determine the
probability of no matching birthdays and then
subtract this probability from 1.

When n ≤ 365:

In a random group of 23 people, there is actually
about a 50–50 chance that two of them will have the
same birthday. Sample solutions for the following
problems in z^3 are as follows:

203. BIRTHDAYPROBABILITY(23,365)

0.5131345029080766

This is known as the birthday paradox. In a room
of 75 there’s a 99.9% chance of two people birth
day matching.

In a group of 6 people, the following gives how
many of them celebrate their birthday in the same
month?

204. BIRTHDAYPROBABILITY(6,12)

0.7745997705740058

http://en.wikipedia.org/wiki/Harold_Davenport
http://en.wikipedia.org/wiki/Richard_von_Mises

ZCubes, Inc.

32

The decimal value is equivalent percentage value of
78%.

In a list of 40 people, it is 88%.

205. BIRTHDAYPROBABILITY(40)

0.8866177230044445

206. BIRTHDAYPROBABILITY(10..100..10)

Count BIRTHDAYPROBABILITY

10 0.12721138320197134

20 0.41972174869639556

30 0.7061121304328839

40 0.8866177230044445

50 0.9666783241671075

60 0.9925402093017472

70 0.9987278316204606

80 0.9998347350723671

90 0.9999836455875729

100 0.9999987671582301

7.d.iv. TOWERS OF HANOI

The Tower of Hanoi puzzle was invented by the
French mathematician Edouard Lucas in 1883. This
puzzle is also known as Towers of Brahma.

The Tower of Hanoi problem is isomorphic to
finding a Hamiltonian path on an n-hypercube.

Suppose three rods, as shown in the figure, and
several disks with different sizes which can slide
onto any rod.

The disks are arranged in ascending order of size on
one rod, with the smallest one at the top in a stack,
such that it makes a conical shape.

The objective of the game is to move all the disks
onto a different pole with the following conditions:

• Only one disk can be moved at a time

• Only the uppermost disk can be moved
from any stack.

• The smaller disk should always occupy the
upper position of each stack at all times.

The puzzle can be solved in seven moves for three
disks. The minimum number of moves required to
solve a Tower of Hanoi puzzle is 2^n - 1, where n is
the number of disk.

Hence the number of steps can be expected to
increase rapidly, with the number of disks. Using
z^3, number of steps to can be calculated for
varying n:

207. 1..100..5@"2^n-1"

n 2n-1

1 1

6 63

11 2047

16 65535

21 2097151

26 67108863

31 2147483647

36 68719476735

41 2199023255551

46 70368744177663

51 2251799813685247

56 72057594037927940

61 2305843009213694000

66 73786976294838210000

71 2.3611832414348226e+21

76 7.555786372591432e+22

81 2.4178516392292583e+24

86 7.737125245533627e+25

91 2.4758800785707605e+27

96 7.922816251426434e+28

When n=3, we expect 7 steps.

208. 3@"2^n-1"

n TEMP1

3 7

http://mathworld.wolfram.com/Isomorphism.html
http://mathworld.wolfram.com/HamiltonianPath.html
http://mathworld.wolfram.com/Hypercube.html

z^3

33

z^3 gives the following solution for 3 disks, which
has 7 steps. At each step it also indicates the move
made.

Since the number of steps can be astronomical for
a moderate number of disks, these calculations can
exceed the capacity of the computer quite easily.

209. TOWERSOFHANOI(4)

In z^3, the user can use the some other objects
(instead of numbers) like:

210. TOWERSOFHANOI(["cat","dog","wolf"])

1 ---> 3 Item: wolf

1 ---> 2 Item: dog

3 ---> 2 Item: wolf

1 ---> 3 Item: cat

2 ---> 1 Item: wolf

2 ---> 3 Item: dog

1 ---> 3 Item: wolf

More detailed solution showing step-by-step
situation can also be obtained using z^3 as follows.
Here, the disks are replaced by cat, dog and wolf,
and the detailed moves to solve the problem is given
by z^3.

211.
TOWERSOFHANOI(["cat","dog","wolf"],true)

The following Example indicates the number of
steps for each number of disks ranging from 1 to
10, calculated after actually conducting the solution.

212. FOR 1..10 "TOWERSOFHANOI(x,true).length"

x TEMP1

1 2

2 4

3 8

ZCubes, Inc.

34

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

7.d.v. FLOYDS TRIANGLE

Floyd’s triangle is the collection of natural numbers
arranged in a right triangle to the left. It is named
after Robert Floyd. Each line in Floyd’s triangle has
one more element than the previous row, and has
consecutive numbers from the left in each row.
The nth row in the Floyd Triangle sums
to n(n^2 + 1)/2, same as the constant of
an n×n magic square.

In z^3, Floyd’s triangle displays as follows, with the
first parameter indicating the number of rows to be
displayed, and the second number indicating the
limit of the natural number to be displayed.

213. FLOYDSTRIANGLE(20,34)

 1

 2 3

 4 5 6

 7 8 9 10

 11 12 13 14 15

 16 17 18 19 20 21

 22 23 24 25 26 27 28

 29 30 31 32 33 34

214. FLOYDSTRIANGLE(1..3)

7.d.vi. FRACTALS-MANDELBROT

Compared to the Euclidean geometry, which has a
long history of more than 2000 years, Fractal
geometry is very new. Benoit Mandelbrot's famous
book The Fractal Geometry of Nature was published
relatively recently, in 1982. Nature is full of fractals,
like trees, river networks, lightning bolts and blood
vessels etc. Hence, fractal patterns tend to look
extremely familiar and natural.

Fractals are infinitely complex patterns that are self-similar
across different scales. This property is called “self-
similarity”. Fractals form a never ending pattern,
created by repeating a simple process over and over,
in an ongoing feedback loop.

215. FRACTAL(20)

In z^3, user can get varying accuracy of fractals, by
setting the parameter of the FRACTAL call.

The following call will create FRACTAL diagrams
for an accuracy of 10, 100 and 1000. The quality of

http://en.wikipedia.org/wiki/Robert_Floyd
http://en.wikipedia.org/wiki/Magic_square

z^3

35

the generated fractal improves with the accuracy
used, as evident from the generated examples given
below.

216. [[10,100,1000]]@FRACTAL

Mandelbrot Set is the set of points in the complex
plane with the sequence (c , c² + c , (c²+c)² + c ,
((c²+c)²+c)² + c , (((c²+c)²+c)²+c)² + c , ...), where
the result does not approach infinity. The Julia Set
is closely related to Mandelbrot Set.

The Mandelbrot Set is obtained from the quadratic
recurrence equation:

zn+1=zn
2+c, (with z0=0),

where points c in the complex plane for which the
computed value of zn does not tend to infinity.

The colors represent points that remain bounded
within a limit for such recursive calls.

217. FDZ3()

FDZ3 gives the FRACTAL generated for

zn+1=zn
3+c.

7.d.vii. LISSAJOUS

Lissajous Curve is a parametric plot of the harmonic
system. It is also called Bowditch Curves. This family
of curves was investigated by Nathaniel Bowditch,
an American mathematician in 1815, and later in
more detail by Jules Antoine Lissajous in 1857.

Lissajous used sounds of different frequencies to
vibrate a mirror. A beam of light reflected from the
mirror, was allowed to trace patterns which
depended on the frequencies of the sounds – in a
setup similar to projectors used in today's laser light
shows.

Lissajous figures often appeared as props in science
fiction movies made during the 1950's. It has
serious applications in physics, astronomy, and
other sciences today.

Technically, Lissajous figure is the intersection of
two sinusoidal curves, the axes of which are at right
angles to each other. Mathematically, this translates
to a Complex harmonic function:

The appearance of a figure is highly sensitive to a/b,
the ratio of a and b.

According to the ratio value, the shapes of the
figures change in interesting ways.

For a a/b ratio=1, the figure is an ellipse.

For a=b, δ = π/2 radians, the figure is a circle.

For δ = 0, the figure is a line.

For a/b = 2, δ = π/4, the result is a parabola.

The Lissajous curve gets more complicated for
other ratios, which are closed only if a/b is rational.

218. LISSAJOUSCURVE("ellipse")

http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Nathaniel_Bowditch
http://en.wikipedia.org/wiki/Jules_Antoine_Lissajous
http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Rational_number

ZCubes, Inc.

36

LISSAJOUSCURVE function can be given upto 8
parameters packed in a set indicating a1, b1, c1, d1,
a2, b2, c2 and d2, or a string like "ellipse", "parabola"
etc.

219. LISSAJOUSCURVE([2,3,3,3,4,5,3,4])

With the interactive parameter changing technique,
right click on the parameter that you want to change
on the ZOS display lines.

Use the range controls that appear to generate a
variety of such curves as given below.

220. LISSAJOUSCURVE([2,61,3,3,4,5,3,4])

221. LISSAJOUSCURVE([2,70,3,3,4,5,3,4])

222. LISSAJOUSCURVE([2,79,3,3,4,5,3,4])

z^3

37

LISSAJOUS Curves are fascinating regarding the
types of curves you can generate by simply changing
the parameters.

223. LISSAJOUSCURVE([1,-3,32,3,-

4,52,-4,4])

7.d.viii. GRAPHING DATA CURVE

A plot is used for representing a dataset graphically
- usually showing the relationship between two or
more variables.

Graphs of functions are used
in mathematics, sciences, engineering, technology,
finance, and many other areas.

224. 1..100@"x^2" .graph()

Two axes are using to plot a graph. The horizontal
axis is called the x-axis and the vertical one is the y-
axis.

225. 1..10..0.008@COS .graph()

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Finance

ZCubes, Inc.

38

In z^3, user can also use multiple functions to plot
a graph showing values from both:

226. 1..360@[DSIN,DCOS] .graph()

7.e. Financial Functions

A variety of functions are available in z^3. The
functions generally follow the functions available in
Spreadsheets, Databases, etc.

For example, PMT function finds the payment per
period for a loan, based on constant payments and
a constant interest rate.

The general syntax for this is:

PMT(Rate,NoPaymentPeriods,PresentValue,FutureValue, Type)

The Type parameter can be 0 or 1, to indicate the
payment at the start of end of the period.

227. PMT(0.132/12,15,50000,100000,1)

-9695.799429757533

228. PMT(0.132/12,15,50000,100000,0)

-9802.453223484865

Now, we can really rev things up to analyze a variety
of inputs with a single command. 15..60..5 will
effectively find all combinations of arguments, with
the NoPaymentPeriods for 15, 20, 25, 30, 35, 40, 45,
50, 55 and 60.

229. PMT(0.132/12,15..60..5,50000,100000,0)

Similarly, the future value of an annuity can be
calculated using the FV function, given the rate,
number of payment periods, payment per period,
optional present value and a type flag indicating the
payment to be done at the start or end of the period.

230. FV(0.05/12,14,-1500,1)

21577.278753101153

On the other hand, PV function gives the present
value, for an optional future value. This can easily
be followed by changing the parameters to try out
different scenarios, such as changing the type
parameter.

231. PV(0.07/12,20*12,2500,0)

-322456.2662406346

232. PV(0.07/12,20*12,2500,0..1)

To find the number of days of in the coupon period
that contains the settlement date, use the
COUPDAYS function.

233. COUPDAYS

(DATE(2012,1,1),DATE(2013,1,1),1,1)

366

COUPDAYBS gives the number of days from the
beginning of a coupon period until its settlement
date.

z^3

39

234. COUPDAYBS(DATE(2008,6,1),DATE(2009,1,1),2,1)

152

COUPDAYSNC gives the number of days from
the settlement date to the next coupon date..

235. COUPDAYSNC(

 DATE(2012,1,6),

 DATE(2013,6,6),

 1,1

)

152

Several functions also available in z^3 to calculate
financial values, of which some are indicated below.

• XIRR - To calculate internal rate of return.

• IRR - To calculate the internal rate of return of

a cash flow stream associated with an

investment.

• MIRR - To find the value of the modified

internal rate of return for a particular cash flows.

• XNPV - To find the net present value for a

schedule of cash flows .

• NPV - To calculate the net present value of an

investment.

• SYD - To find the depreciation of an asset for

a given time period .

• EFFECT - To calculate the effective annual

interest rate.

Combination of these financial functions with
combinatorial arguments, provides the ability to do
flexible analysis for a variety of inputs as below.

The example shows the possibility of analysis by
varying the parameters over ranges of dates,
frequencies, etc.

This can be a powerful analytical or teaching tool in
professional and educational settings.

236. COUPDAYSNC(

 DATE(2008,1..12,1),

 DATE(2009,11,1),

 1..2,1

)

Listing of dates in a series can be achieved by the #
operator for easy use in date and financial functions.

For example, (#2/2/2012-2/12/2012) will give this
series of dates as in the following example.

237. (#2/2/2012-2/12/2012)@DAYSINYEARTILLDATE

Date DAYSINYEARTILLDATE

2/2/12 33day

2/3/12 34day

2/4/12 35day

2/5/12 36day

2/6/12 37day

ZCubes, Inc.

40

2/7/12 38day

2/8/12 39day

2/9/12 40day

2/10/12 41day

2/11/12 42day

2/12/12 43day

7.f. Statistical Functions:

In mathematics, statistics is the body of science that
deals with the analysis, interpretation, presentation
and organization of data. z^3 provides a large
collection of statistical functions that perform most
of the common Statistical calculations from simple
min, max, mean, median and mode calculations to
more complex Statistical Distribution and
Probability tests, Distributions, Frequency, Rank,
Deviation, Variance, Trend Lines, etc.

238. MAX(-10..0,13..25)

25

239. MIN(-29..10)

-29

240. AVEDEV(-15..22)

9.5

241. VARA(10,15,20,25,false)

92.5

242. CORREL([(-10)..(-3)],[20..28])

0.8366600265340756

243. FISHER(0.1..0.4..0.1)

0.10033534773107562 0.2027325540540821

 0.3095196042031118 0.42364893019360184

244. KURT([-40..30,35..60..0.7])

-1.1999999999999988

245. WEIBULL(143,180,170,true)

3.019806626980426e-14

Using z^3, user can conduct a variety of Statistical
Tests.

These include:

ANOVA SINGLE FACTOR

BARTLETT'S TEST

CHITEST

COCHRAN'S Q TEST

DURBIN WATSON TEST

FTEST

FRIEDMANN TEST

KENDALL'S TAU TEST

KRUSKALWALLI'S TEST

KSTESTCORE

KSTESTEXPONENTIAL

KSTESTNORMAL

LEVENE'S TEST

MANNWHITNEY U TEST

MOODSMEDIAN TEST

RIEMANN ZETA TEST

SHAPIRO-WILK TEST

SIGN TEST

SPEARMAN'S RHO TEST

TTEST

TTEST PAIRED

TTEST TWO SAMPLES EQUALVARIANCES

TTEST TWO SAMPLES UNEQUALVARIANCES

WILCOXON RANK SUM TEST

WILCOXON SIGNEDRANK TEST

ZTEST

ZTEST TWO SAMPLE FOR MEANS

More info is given at http://wiki.zcubes.com

http://wiki.zcubes.com/ANOVASINGLEFACTOR
http://wiki.zcubes.com/Bartlett%27sTest
http://wiki.zcubes.com/CHITEST
http://wiki.zcubes.com/Cochran%27s_Q_Test
http://wiki.zcubes.com/Durbin-Watson
http://wiki.zcubes.com/Kendall%27s_Tau_Test
http://wiki.zcubes.com/KRUSKALWALLISTEST
http://wiki.zcubes.com/KSTESTCORE
http://wiki.zcubes.com/KSTESTEXPONENTIAL
http://wiki.zcubes.com/KSTESTNORMAL
http://wiki.zcubes.com/LEVENESTEST
http://wiki.zcubes.com/MANNWHITNEYUTEST
http://wiki.zcubes.com/MOODSMEDIANTEST
http://wiki.zcubes.com/Shapiro-Wilk_Test
http://wiki.zcubes.com/SIGNTEST
http://wiki.zcubes.com/Spearman%27s_Rho_Test
http://wiki.zcubes.com/TTEST
http://wiki.zcubes.com/TTESTPAIRED
http://wiki.zcubes.com/TTESTTWOSAMPLESEQUALVARIANCES
http://wiki.zcubes.com/TTESTTWOSAMPLESUNEQUALVARIANCES
http://wiki.zcubes.com/WILCOXON_RANK_SUM_Test
http://wiki.zcubes.com/WILCOXONSIGNEDRANKTEST
http://wiki.zcubes.com/ZTEST
http://wiki.zcubes.com/ZTESTTWOSAMPLEFORMEANS

z^3

41

8. Appendices

8.a. Appendix I Operators

The following operators are used in the z^3
language:

+, -, *, /, ^, % Arithmetic
Operators

| | Array Function and
Creation Operator

.. , ... Arithmetic and
Geometric Series
Creation

@ Apply to

Series or Special
Case Qualifier for
Dates, Calci

Cells, and
Sequences, etc.

<<< Member or Variable
Assignment

() Function Call

[]

Set Creation

{} Object Set

[“key”] Set Object
Membership

. Member Function
Dereferencing.

. mf Member Function

.$(function,
parameters)

Element-wise
Function
Application

.$$(function,
parameters)

Row-wise Function
Application

.$$$(function,
parameters)

Column-wise
Function
Application

.$_(function,
parameters)

Cumulative
Function
Application (all)

8.b. Appendix II: Simple Set and Objects

8.b.i. SET

Simple Set are declared using the conventional []
notation, and items are then accessed using the
common [index] notation.

8.b.ii. ASSOCIATIVE SET/OBJECTS

In z^3, associative set are distinct from simple set, in
both declaration and qualification syntax.

Associative set can be declared using { } notation, with
members within indicated using (:) as the separator
between the member id and the value. While
accessing such a member, conventional operator (.)
is used to reference it.

In the following example all these characteristics are
demonstrated elegantly as a data and a function are
associated.

246.

A1={"a":8,"g":function(x){return(x+5)}}

{

 "a": 8

}

247. A1.g(5)

 10

ZCubes, Inc.

42

8.c. Appendix III: Javascript and z^3

z^3 uses Javascript as a backbone and provides full
functionality and power of Javascript to pass
through.

8.c.i. USING SET MEMBER FUNCTIONS

For example, any set, including matrices, can be
operated on using any of the set member functions.

This can be triggered even with simple javascript
commands as follows. Note the repeated
application of additional member functions. In the
following, .seq() fills a set with a sequence, and
.explode() expands an element into a set having
elements from 1 to that element.

248. new

Array(8).seq().explode(1).print()

 [

 [],

 [1],

 [1,2],

 [1,2,3],

 [1,2,3,4],

 [1,2,3,4,5],

 [1,2,3,4,5,6],

 [1,2,3,4,5,6,7]

]

249. new

Array(8).seq(2).explode(1).print()

[

 [1,2],

 [1,2,3],

 [1,2,3,4],

 [1,2,3,4,5],

 [1,2,3,4,5,6],

 [1,2,3,4,5,6,7],

 [1,2,3,4,5,6,7,8],

 [1,2,3,4,5,6,7,8,9]

]

250. new Array(8).seq().print()

[0,1,2,3,4,5,6,7]

251. new Array(8).seq(2).print()

[2,3,4,5,6,7,8,9]

252. new Array(8).seq(2,2).print()

[2,4,6,8,10,12,14,16]

253. new

Array(8).seq(2,2).explode(2).print()

 [

 [2,3],

 [2,3,4,5],

 [2,3,4,5,6,7],

 [2,3,4,5,6,7,8,9],

 [2,3,4,5,6,7,8,9,10,11],

 [2,3,4,5,6,7,8,9,10,11,12,13],

 [2,3,4,5,6,7,8,9,10,11,12,13,14,15],

 [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17

]

]

An identity matrix of size 5 is generated, filled with
random numbers and then cleared and filled with 3,
and is printed below.

254. IM(5).deal().clear(3).print()

[

 [3,3,3,3,3],

 [3,3,3,3,3],

 [3,3,3,3,3],

 [3,3,3,3,3],

 [3,3,3,3,3]

]

z^3

43

8.d. Appendix IV Series Generation

Creating series of items to be the input for further
processing is a powerful aspect of z^3.

These can range from arithmetic series, geometric
series, other prepacked series, alphabet series, and
date series.

8.d.i. ARITHMETIC SERIES

<Start>..<end>..<interval>

notation is adopted for arithmetic series.

e.g.:

1..100..2

8.d.ii. GEOMETRIC SERIES

<Start>…<end>…<index>

notation is adopted for arithmetic series.

e.g.:

1...100...2

8.d.iii. PREPACKED SERIES

Several standard situations like angles in radians of
degrees are indicated as below.

The terms can be composed using the pattern, (the
numbers can be changed as you need), in a self-
evident manner:

rad360by4

deg180by3

deg360by4@SIN

radpi/2by3

radpiby13

radpiby3

radpiby2

deg180by5

deg360by1@SIN

deg360by180@SIN

deg3600by180@SIN

radPiby13@LOG

rad16*Piby16

e.g.:

SIN(radpiby2)

radpiby10@[SIN,COS] .graph()

8.d.iv. DATE SERIES

A series of dates can be generated using # symbol
followed by the data range. #<Start>-<End >
Dates.

e.g.:

#1/1/2001-1/31/2013

8.d.v. ALPHABET SERIES

A series of letters can be generated using # symbol
followed by the letter range. #<Start>-<End
Letters.

e.g.:

#a-z

#A-D

8.e. Appendix V Member Functions

The following is a listing of member functions for
sets, strings, functions, objects and other key objects. By
convention, member functions follow lowercase
notation in general, while primary functions follow
uppercase notation. The intellisense capability on
the command-line assists users with listing of
functions and arguments, simply by pressing
Ctrl+Space using the keyboard. Set member
functions are given under the Array object in the
following table, in an interchangeable manner.

Object Member Function Parameters

 String endsWith Str

 Array PAD

 Array headingset Array

 Array some fun /*, thisp*/

 Array shuffle

 Array map callback, thisArg

 Array IntArrayToString

 Array ZCompareArrays Arr

 Array ZMap Fnc

 Array ZFoldRight fnc,start

 Array ZFoldLeft fnc,start

ZCubes, Inc.

44

 Array ZExistsObject x

 Array ZFilter fnc

 Array ZRandomElement

 Array IsArray

 Array ZMapR fnc

 Array table

 Array calci

 Array transpose IncludeHeader

 Array column

 Array columns

 Array row

 Array rows

 Array cell Row, Column,

Width, Height

 Array cells

 Array accumulate Total

 Array cumcolumns

 Array cumrows

 Array cumcolumn

 Array cumrow

 Array accumulatewith CumulateFunction,

CurrentResult

 Array cumcolumnswith

 Array cumrowswith

 Array cumcolumnwith

 Array cumrowwith

 Array stringlist

 Array tofunctions

 Array setHeadings Headings

 Array headings

 Array istype

 Array t

 Array copy

 Array extract

 Array zip OtherArray

 Array unzip

 Array zero ValueInstead,

PreserveStructure

 Array random Base,Numbers

 Array rand

 Array pad Length, PadString

 Array dim

 Array seq StartIndex, By

 Array explode StartIndex, By,

RecurseTillLevel

 Array implode RecurseTillLevel

 Array unimplode RecurseTillLevel

 Array specialprint Trimmed,TabLevel

 Array print Trimmed,TabLevel

 Array cartesianproduct IsWithoutFlatten

 Array make1to2d ReplaceOriginal

 Array twod

 Array is2d

 Array is1d

 Array rowpush OtherArray

 Array count FirstLevelOnly

 Array mergecolumns OtherArray

 Array clone

 Array rowconcat OtherArray

 Array mergerows

 Array colconcat

 Array columnconcat

 Array rowlengths Function

 Array deal Within, ManyInEach

 Array nth Nth, Count

 Array first Count

 Array first

 Array second

 Array third

 Array fourth

 Array fifth

 Array sixth

 Array seventh

 Array eighth

 Array nineth

 Array tenth

 Array eleventh

 Array twelfth

 Array thirteenth

 Array fourteenth

 Array fifteenth

 Array sixteenth

 Array seventeenth

 Array eighteenth

z^3

45

 Array nineteenth

 Array twentieth

 Array hundredth

 Array thousandth

 Array millionth

 Array last Count

 Array lastelement Count

 Array firstelement Count

 Array pastefolds MidOnly

 Array mid From,Count

 Array few

 Array any Count

 Array isTrue

 Array isFalse

 Array rest Start, Count

 Array otherthan ArrayWithElementsT

oExclude

 Array where Term

 Array spliteach SplitExpression,

RetainSplitterAlso

InResult

 Array slices SliceExpression

 Array core

 Array nicejoin JoinString,

EndString,

SubArrayString

 Array fjoin HeadLength,

JoinString

 Array funcjoin HeadLength,

FindString,

FirstString,

MidString,

LastString

 Array injoin JoinWith

 Array merge OtherArray,

Function

 Array across OtherArray,

Function

 Array across OtherArray,

Function

 Array insert Value,

AfterLastFlag

 Array pairmatch AtFoldValue,

AtReverseFoldValue

, StartFrom

 Array fold AtFoldValue,

AtReverseFoldValue

 Array filter Function

 Array plot Mode

 Array removeByVal Value

 Array graph Mode

 Array car

 Array cdr

 Array head

 Array tail

 Array equal Array,

CheckLength,

StartFrom

 Array equalvalues Array,CheckLength,

StartFrom

 Array compare

 Array pack

 Array multisort

 Array clean Expression,

ReplaceWith

 Array is Thing, IsNot

 Array isnull

 Array isnotnull

 Array match Expression

 Array matchcolumn Expression, Column

 Array matchrow Expression, Row

 Array matchindex Expression,

IndexThenFromMatch

 Array matchvalue Expression,

IndexThenFromMatch

 Array include

 Array notinclude Item

 Array flatten

 Array forward Function,

StartValue

 Array backward Function,

StartValue

 Array rotaterows NumberOfSteps

 Array rotatecolumns NumberOfSteps

 Array parts NumberOfParts,

SpecificPart

 Array half

 Array halves

 Array thirds

 Array fourths

 Array firsthalf

 Array secondhalf

 Array flipparts

 Array rotate NumberOfSteps

 Array exec

 Array maprow Function

 Array mapper Function

ZCubes, Inc.

46

 Array maplist fun

 Array maprow Function

 Array mapper

 Array maplist fun

 Array i PreviousArray

 Array __$

 Array ri

 Array ri

 Array ci

 Array $

 Array $$

 Array $$$

 Array $_

 Array $x

 Array x$

 Array $X

 Array X$

 Array $CELLS

 Array $R

 Array $C

 Array $A Parameter

 Array $dth

 Array $diag

 Array $d

 Array ids

 Array rowcount

 Array colcount

 Array size2d

 Array size

 Array cube

 Array slides

 Array o

 Array flatten

 Array remove

 Array removewith

 Array objects

 Array eval

 Array set

 Array setrow Row, Array

 Array setcolumn Column,

ColumnValues

 Array flip

 Array reverselevel Level

 Array shiftlevel Level,

NumberOfTimes

 Array fillwith

 Array branch

 Array branchvalues

 Array clearcopy FillWith

 Array clear FillWith

 Array filtermatches MatchIdenticalMatr

ix, OnlyMatches

 Array replace ExpressionArrayOrV

alues, ReplaceWith

 Array replicate Count

 Array unwrapleaf

 Array appendfunction Function

 Array $$F

 Array across OtherArray,

Function

 Array pair Value, OnRight

 Array except

 Array ntimes Function,

NumberOfIterations

, Accuracy,

Converge

 Array converge Function,

NumberOfIterations

, Accuracy,

Converge

 Array repeatntimes Function,

NumberOfIterations

, Accuracy,

Converge

 Array pieces Width, Function

 Array foldl Function,

StartSeed

 Array foldr Function,

StartSeed

 Array partitiononcondi

tion

TakeDropOrAllFlag,

Function,

Parameter

 Array filteronconditio

n

TakeDropOrAllFlag,

Function,

Parameter

 Array collectwhile

 Array suchthat

 Array collect

 Array takewhile

 Array dropwhile

 Array collectwhileasve

ctor

 Array suchthatasvector

 Array collectasvector

z^3

47

 Array takewhileasvecto

r

 Array dropwhileasvecto

r

 Array splitwhile

 Array splitwhileasvect

or

 Array det Array

 Array adjoint Array

 Array inverse Array

 Array determinant

 Array adjoint

 Array inverse

 Array addsequence InFront,StartFrom,

OptionalSequenceAr

ray

 Array addrow NumberOfRows

 Array addcolumn NumberOfColumns

 Array insertrow Index,

NumberOfRows

 Array insertcolumn Index,

NumberOfColumns

 Array deleterow Where

 Array deletecolumn Where

 Array ar

 Array ac

 Array dr

 Array dc

 Array ir

 Array ic

 Array bindcolumn

 Array filteronrow Condition,

ExtractColumns,

FilterOnColumn

 Array filteroncolumn Condition,

ExtractColumns,

FilterOnColumn

 Array aggregate Columns,Function,

Params

 Array lookup

 Array reversesort Function

 Array printf StyleString,

JoinString

 Array atindex

 Array data

 Array result

 Array type

 Array checktype TypeArray,ForceChe

ckOnVariables

 Array numbers ForceCheckOnVariab

les

 Array drop

 Array keep

 Array nullifyobjects Recursive

 Array ZJSON Recursive

 Array makekeyarray Recursive

 Array atnode Function,SubtractB

yArray,ScaleByArra

y,DoNotShowIndices

 Array nodeindex

 Array indices Function,SubtractB

yArray,ScaleByArra

y,DoNotShowIndices

,RowArray

 Array xy FunctionArray,

OffsetArray,

ScaleArray,

GiveIndicesAlso,Do

Centering

 Array xypanel FunctionArray,

OffsetArray,

ScaleArray,

GiveIndicesAlso

 Array tablelookup RowValueMatch,

ColumnValueMatch

 Array t

 Array c

 Array r

 Array uncrosstab UptoColumn

 Array crosstab RowSet,

ColSet,PageSet,Dat

aSet

 Array findcellref Values

 Array setaxis Axis, ColumnValues

 Array joincolumnswith ArrayOfJoinCharact

ers,IsRepeat

 Array joinrowswith ArrayOfJoinCharact

ers,IsRepeat

 Array notwithinlimits LimitArray,

IncludeEdges

 Array withinlimits LimitArray,

IncludeEdges

 Array concatall LimitArray,

IncludeEdges

 Array deepcopy

 Array async Iterator, CallBack

 Array value Function

 Array of

 Array truefalse IsCheckTrueFunctio

nList,IsCheckFalse

FunctionList,DoFla

ttenFirst

ZCubes, Inc.

48

 Array fixat Index,Fix

 Array prefix

 Array suffix

 Array chunks ChunkSize

 Array add Thing

 Array inc

 Date format mask, utc

Function

$

Function

merge array, args

Function

argumentNames

Function

update array, args

Function

curry

Function

delay timeout

Function

defer

Function

argumentaslist

Function

wrap wrapper

Function

fury AvoidArguments

 Number units

 Number fuzzy

 Number getfuzzy

 Number larger OtherNumber

 Number smaller OtherNumber

 Number normalizeunits OtherUnits

 Number add OtherNumber

 Number subtract OtherNumber

 Number multiply OtherNumber

 Number divide OtherNumber

 Number div OtherNumber

 Number power OtherNumber

 Number m

 Number a

 Number s

 Number d

 Number di

 Number p

 Number makeunits String

 Number compareto OtherNumber

 Number equals OtherNumber

 Number notequals OtherNumber

 Number string

 Number setunit ToUnits

 Number convert ToUnits

 Number eval

 Number replicate Count

 Number isin Array,IgnoreCase

 Number trim

 Number slice

 Number withinlimits LimitArray,

IncludeEdges

 Object print

 Object makecopy

 Object core

 Object keyprint ElementSplit,

LineSplit,

QuoteKey,

BracketWrap

 String reverse

 String eval

 String trim

 String trimend

 String trimbegin

 String trimstart

 String toInt

 String duplicate NumberOfTimes

 String encrypt Seed

 String decrypt Seed

 String endsWith str

 String startsWith str

 String inarray Array, IgnoreCase

 String isin

 String cube

 String equation Replace

 String replicate Count, JoinWith

 String pieces Each

 String uniteval

 String tagvalues Tags

 String tokens Splitter

 String clean Expression,

ReplaceWith

 String insert index, string

 String splitat AtArray

 String substringindices SubString

z^3

49

9. How to work with zcubes

Here are the links to help you on working with
ZCubes and learn more about ZCubes features.
http://wiki.zcubes.com/Learn_ZCubes

http://wiki.zcubes.com/Learn_ZCubes

www.zcubes.com

Do It All!

