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1. Introduction 

Why another programming language? Don’t we 
have enough of them? 

Well, let us try this real world experiment. Go to the 
best programmer you know. Pick the simplest 
formula you can think of: E=mc2. Ask how the 
Energy (E) can be calculated, for a mass (m) of 1kg, 
2kg, 3kg,… 10kg and for a constant Speed of Light 
(3x10^8m/s).  Let us just watch the programmer for 
what happens next. Yes, go ahead and start a stop 
watch! 

It is likely that the programmer would pull up a 
spreadsheet, and type formulae notations into the 
document such as on the right, and within a minute 
or so, give you the answers.  

C =3*10^8 

M 
 

1 =D5*$E$3^2 

=D5+1 =D6*$E$3^2 

=D6+1 =D7*$E$3^2 

… … 

=D12+1 =D13*$E$3^2 

=D13+1 =D14*$E$3^2 

Or maybe, the programmer would make a program, 
in some computer language to do this, and will 
come back to you in about an hour!  

Today, an ordinary computer can do billions of 
operations per second! And even with the best 
techniques, translating from our human language to 
computer language takes minutes or hours even for 
the simplest of equations! This clearly shows the biggest 
problem with the current state of the art computer human 
interaction. 

That is why we created a simple language for you 
and the machine called:  

z^3. 

 

 

2. What is z^3? 

z^3 is a general purpose language that is easy to 
write and natural to read, powered by high 
performance, scalable, computing constructs which 
unlimits thinking and expression. z^3 console is 
launched from ZCubes platform on any HTML5 
enabled browser. 

 

FIGURE 1 - FRACTAL PATTERN 

GENERATED BY USING Z^3. 

 

In the following sections of the document, z^3 
specifics will be described in easy to follow 
examples.  

2.a. ZCubes Platform 

ZCubes is a platform for users to create and 
manipulate information. The website address is 

The vision behind the z^3 language is 

specifically to make human interaction 

with computers convenient, simple and 

elegant, at any level of complexity, all 

immersed in a framework of immense 

power. 
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http://www.zcubes.com. To load the application 
simply click on the Z icon, or directly visit it at 
http://www.zcubes.com/zspace/zcubes.aspx. 

Being an omni-functional platform, ZCubes allows 
creation of documents with unparalleled power, 
with almost any imaginable functionality provided 
at your finger tips. Upon load, the ZCubes Platform 
looks as below with a simple minimal interface: 

Menu items can be accessed by clicking the Z 
button. 

ZAP is the desktop version of ZCubes that allows 
deeper access to programming interfaces than the 
web version. The methods to access z^3 in ZAP is 
similar to the web-version.  

2.b. Z^3 Programming Interface 

The z^3 Code Cube Editor is a full-fledged 
programming interface to interact with ZCubes 
Logic. This code can be a part of the document if 
kept for more advanced uses. This is the preferred 
way to interact with z^3 within the ZCubes 
interface. 

To launch the code editor, click on icon on the 
main menu of ZCubes Platform. 

 

Upon entering code in z^3 code cube, and pressing 
Run (F9), the results are displayed.  

The code can also be interacted in Live Mode, and 
selected text can be altered dynamically using Live 
Scroll Bars. This feature is meant for advanced 
users.  

 

 

2.c. Z^3 Console 

For simple interaction with the programming 
interface, z^3 console may be used.  z^3 console is 

launched by clicking the icon  on the bottom 
right of the ZCubes platform. Please refer to 
Appendix 1 for operators, symbols and notations 
used in ZOS. 

 

 

 

 

The ZOS Console to interact with z^3 can be 
accessed using the command console button at the 
extreme right bottom. 

http://www.zcubes.com/
http://www.zcubes.com/zspace/zcubes.aspx
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Commands can now be typed into the Enter ZOS 
Command area as indicated below. 

 

 

 

Entering command like 1..10@SIN and pressing 
enter gives you the result in the window. 

 

 

2.d. ZCubes – Selected Features 

ZCubes is a 3D platform, which changes its nature 
based on the user's perspective.  

 

For example, it can function as a blackboard in one 
moment, and a presentation tool in another 
moment, or a spreadsheet in yet another moment.  

 

 

 

 

 

 

The platform changes like a chameleon based on 
the attributes users wish to have anytime. More 
details on how to work with ZCubes is explained in 
section 8. 

2.e. Command Line Version of z^3  

Server programs written as .z3 files can be run 
using the z^3 command line compiler/interpreter.  

Windows versions are available at the moment. 
Mac and Linux versions will be following soon. 
The latest version can be downloaded from 
http://downloads.zcubes.com/zconsole/z3compiler.zip 

After downloading, the zip file can z3compiler.exe 
can be extracted a folder (such as c:\z3). This 
program can run any .z3 files, at the OS Command 
Line using command such as  

➢ z3compiler -i myprogram.z3 

Let us now dive into the z^3 language. Let us start 
with data structures in the next chapter.  

mailto:1..10@SIN
http://downloads.zcubes.com/zconsole/z3compiler.zip
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3. Data Collections 

Most are familiar with matrices, and arrays are used 
in languages to represent matrix like data structures. 
An array is a simple data structure to create, collect 
and manage data. z^3 transforms conventional 
arrays into something much more powerful called 
Sets. 

3.a. Sets 

Sets are new data types used in z^3.  These are arrays 
(not necessarily rectangular) that are flexible in size, 
shape, types and contents, which make them 
extremely powerful. The term set is italicized 
throughout the document for easy identification. 

The following are notable properties of Sets, 
compared to conventional arrays: 

• Sets are unstructured arrays, of varied sizes 
and types. 

• Sets may contain other Sets of any complexity. 

• Sets are enhanced with several member 
functions1 in z^3.  

For example, sets can be printed out with the built-
in member function print(), to get the internal 
representation in z^3.  

Set-based z^3 resolves complexity and scaling 
issues, while achieving high-performance, extreme 
flexibility or natural expressiveness.  

3.b. Set – Simply a Collection of Data 

Let us start with a simple example.  

At the ZOS Console, right after the command 
prompt indicated by , enter the command 1..3.  Let 
us use the member function .print() to display the 
set representation in z^3. 

1.  1..3.print() 

                                                 

1 A listing of these are given in Section 0  

Appendix V Member Functions. 

[1,2,3] 

The “two dots” operator used in 1..3 creates a 
simple set, with 3 integer elements (1 at index 0, 2 
at index 1, and 3 at index 2 positions). Sets have 
indexes starting at 0, which is a common practice in 
C-like languages.  

Once a set is created, various operations can be 
performed on it. As you shall see later, the results of 
many of these operations are also sets, which mean 
we can continuously apply these operations until 
desired results are achieved. 

An interesting point to note is that the set 1..3 can 
be implicitly declared without any extra word or 
punctuations unlike most languages2. 

It is also important to see the use of .. operator as a 
technique to create a sequenced collection of 
number values (from lower end 1 to upper end 3 - 
in this case as a range). To create a set filled with a 
series, the [ ] operator is not required. Hence, 
whenever we use [ ] array operator along with .. 
operator, it indicates a set of set(s). This is 
effectively a set with index 0 containing three 
elements (this inside element being similar to the 
array in Example 1).  

2.  [1..3] 

        1        2        3 

This is clearer when we apply .print(). 

3.  [1..3].print() 

[  [1,2,3 ]  ] 

In the example above: the internal set representation 
is displayed as [[1,2,3 ]].  

A set can contain other sets (containing any type 
of data) recursively (or one within the other 
without limits), as in the following,: 

2 Several Series Generation Techniques are detailed in 
Appendix IV Series Generation 
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4.  [2,4,1..3,2].print() 

[2,4, 

 [1,2,3 ], 

2] 

In this example more complex items (including a set) 
is collected into one set: Location at Index 0 contains 
integer 2, at Index 1 contains integer 4, at Index 2 
contains a set, and at the location at the last Index 3 
contains integer 2. 

Sets created can then be operated on using functions 
(or even sets of functions) using the @ operator as 
shown below: 

5.  1..3@COS 

Number COS 

1 0.5403023058681398 

2 -0.4161468365471424 

3 -0.9899924966004454 

However, aggregate functions such as SUM should 
be applied to the entire array, not to each element. 

6.   1..3@SUM 

               SUM 

        1        1 

        2        2 

        3        3 

In the example above, the result may appear 
confusing at first, since SUM function is applied for 
each set element, if we use the @ operator.  

The following example shows the application of 
function SUM() to a set (not separate elements). The 
three elements of set are added, resulting in 6, the 
expected answer. 

7.  SUM(1..3) 

        6 

Let us see another operator … (“three dots”) in 
action. 

8.  1...8 

1 2 4 8 

The “three dots” notation generates a set with 4 
values, as a geometric series from 1 to 8 as 1, 2, 4, 8. 
Another example below shows geometric series 
from 1 to 30. 

9.  1...30 

1 2 4 8 16 

Now let us look at more complex scenarios.  

In the following, the “two dots” (..)  operator is 
compounded to make an even more powerful 
expression: 

10.  1..10..2 

1 3 5 7 9 

Here the first .. indicates a series from a start value 
to an end value, and the second .. is used as an 
increment operator. Hence, the result includes all 
numbers from 1 to 10, with an increment of 2. 

4. Set – Object Representations 

In z^3, {} is used for the creation of object data 
structures (also known as associative or composite 
set (4.g)).  

The JavaScript associate array syntax and semantics 
are kept as they are.  

11.  A={a:1..3,b:1..4} 

{ 

    "a": [ 

        1, 

        2, 

        3 

    ], 

    "b": [ 

        1, 

        2, 

        3, 

        4 

    ] 

} 
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In Example  11, a set with two items (a as a set of 3 
integer values, and b with another set of 4 integers) 
is dynamically created.  

By simply using = (as assignment operator), A is 
defined as a variable, which now stores an associative 
set, which can then be referenced as below.  

12.  A.a 

1 2 3 

Now A.a refers to the attribute a of the newly 
created variable A. Likewise, A.b will display the 
contents of item b of variable A.  

4.a. Set – Complex Set Layouts 

Now, consider a simple set of three elements 
(equivalent to 1..3):  

13.  [1,2,3] 

1 2 3 

A more complex layout of a similar set is given 
below, where 1 and 2 are in one element (stored as 
a sub set) of the new set.  

14.  [1..2,3] 

       1        2 

       3 

Examples 15 to 18 below show slight variations on 
how non-regular layouts of set elements can be 
defined. 

15.  [1,2..3] 

       1 

       2        3 

16.  [1..3,1..3] 

       1        2        3 

       1        2        3 

17.  [1..2,1..5] 

       1        2       

       1        2        3        4        5 

18.  [1,1..2,4] 

       1              

       1        2 

       4 

These examples clearly demonstrate that using clear 
and elegant operators in z^3 (such as ..  and …), 
simple, consistent and powerful structures can be 
created. 

4.b. Matrix – as a Set of Set(s) 

Arguably, a matrix (which can be represented as a 
Set of Set(s)) is one of the most frequently needed 
and useful data structures in programming.   

A table can be visualized as an example of a matrix 
– such as a table containing rows and columns in a 
database, or a simple table with rows and columns 
in a simple document or the tabular grid(s) in 
spreadsheets.   

In mathematical terminology, matrix definitions 
and usage are very common - such as identity 
matrix, diagonal matrix, sparse matrix, and so on. 
Hence, operations on matrices are provided by z^3 
using a rich set of operators and functions. 

4.c. Matrix  Operator(||) 

Matrix construction can be done with the || 
operator. For example, creation of a 4x4 identity 
matrix can be done with the following simple 
notation: 

19.  |4| 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

|4| as it is displayed above gives a 4 by 4 identity 
matrix by definition. Note that the matrix operator 
|| is used here for both matrix declaration and 
initialization.  

If only one dimension is given, it is assumed that the 
matrix requested is an identity matrix.  
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This highlights the simple and minimalist style 
provided by z^3 throughout. Similarly, |4,2| 
constructs a 4x2 matrix.   

20.  |4,2| 

0 0 

0 0 

0 0 

0 0 

Similarly, |4,2,2| constructs a 4x2 matrix, with each 
cell having 2 values, all initialized to zero: 

21.  |4,2,2| 

 

The variations of matrix construction can be seen 
in the following examples.  

The notation inside matrix definition can be with 
commas, the letter x, or a simple space.  

22.  |2x2| 

0 0 

0 0 

A square matrix of 2 by 2 with initial values 0, is 
given by this notation. 

 

23.  |3x3| 

0 0 0 

0 0 0 

0 0 0 

Here a square matrix of 3 by 3 with initial values 0 
is obtained. Similarly, you can define |4x2| or 
|2x4| as given below. 

24.  |4x2| 

0 0 

0 0 

0 0 

0 0 

25.  |2x4| 

0 0 0 0 

0 0 0 0 

Now, let us look at some more advanced examples.  

The example above gives a zero-filled 2 by 2 by 2 
matrix (i.e., a matrix of 2 by 2, with each element 
containing a zero-filled 2-element matrix). 

26.  |2x2x2| 

0 0 
 

0 0 
 

0 0 

 

0 0 
 

The following gives a zero-filled matrix of 2 by 2 
with 3 elements each.  

27.  |2x2x3| 

0 0 0 
 

0 0 0 
 

0 0 0 
 

0 0 0 
 

 

28.  |2x3x3| 

 0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 
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The matrix notation can scale-up for more complex 
uses, and for any size and level of dimensions. 

4.d. Set input to Functions 

The simplest case is SUM of set 1,2,3 is calculated 
by the following: 

29.  SUM 1..3 

6 

In the following Example  30, the set 1..3 and 2..4 are 
passed to the function SUM, and it gives the sum of 
all the numbers in both set. Compare this later, 
against the combinatorial arguments applied to 
functions (detailed in Section 4.f.i below). 

The following Commands (30, 31, 32) calculate the 
SUM of all parameters (each of which may be a set 
containing a series) provided in each case.  

30.  SUM 1..3 2..4 

15 

which is the same as: 

31.  SUM(1..3,2..4) 

15 

32.  SUM 1..3 2..4 1..4 

25 

We can have any number of arguments to aggregate 
functions.  

Commas and parenthesis can be omitted for 
simpler calls. For more complex calls, commas and 
parenthesis may be required to avoid ambiguity. 
However, it is always recommended use the 
brackets to avoid confusing situations. 

                                                 

3 x and y represent variables from sets on each side of the 
binary operation. x and y can be replaced by any two names 
for the variables. 

4.e. | | Binary Operation 

The binary operation with matrix operator | |, 
called the “two bars” operator, is simple and natural 
to use.  

Two matrices of compatible sizes can be operated 
on with matrix operations, such as |+|, |-|, |*|, 
and |/|, as given below. 

33.  [1,2,3]|+|[1,2,3] 

          2          4          6  

34.  [1,2,3]|-|[1,2,3] 

          0          0          0  

35.  [1,2,3]|*|[[1],[2],[3]] 

        14 

36.  [1,2,4]|/|[1,1,2] 

          1          2          2  

37.  [[2],[2],[2]]|*|[1,2,3] 

          2          4          6  

          2          4          6  

          2          4          6  

 

Also the two bars of this operator can brace any 
arbitrary function or operator.  

Examples 38 to 41 show combining of two matrices 
using a simple function represented with x and y, 
provided in between the | | operator3.  

38.  1..3|x+y|3..5 

4 6 8 
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39.  1..3|x*y|3..5 

3 8 15 

40.  1..3|(x^2+SIN(y))|3..5 

1.1411200080598671 3.2431975046920716 8.041075725336862 

41.  1..3|SIN(x)+y|3..5 

3.8414709848078963 4.909297426825681 5.141120008059867 

4.e.i. MEMBER FUNCTIONS OF SET 

A variety of useful and powerful member functions 
(listed in 0  

Appendix V Member Functions) are provided for 
sets. Examples include, .print, .$, .index, .tenth, .random,  
etc.  

By convention, member functions are generally in 
all lowercase, while primary functions are generally in 
all uppercase. These member functions are invoked 
using dot-notation, like most conventional object-
oriented languages.  

42.  |4x2| 

0 0 

0 0 

0 0 

0 0 

For example, .transpose() is a member function that 
will return the transpose of the marix. 

43.  |4x2|.transpose() 

          0          0          0          0 

          0          0          0          0 

44.  |3x3|.random(3)  

0.4868065193295479 1.9101847931742668 0.25111658102832735 

0.5587615873664618 0.26558934850618243 2.996888898080215 

0.9493648773059249 2.7146050329320133 2.2170031929854304 

With the simple notation above, a 3x3 matrix is 
created, and filled with random numbers up to 3. 
The following shows the use of .fillwith() to fill the 
dynamically created matrix of size 3x3.  

45.  |3x3|.fillwith(8) 

8        8        8 

8        8        8 

8        8        8 

Note that in the case above all cells are filled with 8, 
and in the case below a series of numbers from 1..9 
are used. 

46.  |3x3|.fillwith(1..9) 

1        2        3 

4        5        6 

7        8        9 

Again, matrix dimensions can be given implicitly 
(such as |2| for a |2x2| matrix).  

Functions like random(), deal(),and many other 
available functions listed in the Section 0  

Appendix V Member Functions can be used to 
manipulate sets. 

47.  |2|.deal() 

0.44067314197309315 0.14973507658578455 

0.15162911941297352 0.7144281121436507 

 

48.  |2x3|.deal() 

0.24147144774906337  0.4198728590272367 0.07390831736847758 

0.48515111417509615 0.0688244975153704 0.28236311418004334 

49.  |3x3|.random(3) 

creates a 3 by 3 set and fills it with random numbers 
with values upto 3. 

50.  A1=|2x2|.fillwith(3..6) 

3        4 

5        6 

The .fillwith() member function is used to fill a 2 by 
2 matrix with numbers 3, 4, 5, and 6. 

The member function det calculates the determinant 
of a Matrix. 
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51.  A1.det() 

-2.000000000000001 

Note that the simple function DET() and det() also 
can be invoked to calculate the determinant of a 
Matrix.  

 

52.  det(A1) 

-2.000000000000001 

The statement above will calculate the determinant 
of the matrix A1 created in the previous step 
(Example  50). 

53.  IM(3).across(IM(3)) 

 

The .across() member function of set is powerful way 
to operate on two matrices, cell by cell. The result 
of this operation applies the operation among 
EVERY combination of cells among the matrices4.  

Even when we graduate into more complex 
combinations of computational constructs, the 
language keeps its fundamental simplicity and 
consistency.  Looping construct is rarely needed in 
z^3, as functions can be applied iteratively with 

                                                 

4 This is similar to the TENSOR product of matrices. Here 
it simply provides the row column .index() as result. 

implicit initialization (and increments) in a natural 
order and minimalistic style.  

While set and functions can be used in very rich ways 
with z^3's syntactical simplicity, traditional 
programming language syntax and style also can be 
used. This is beneficial for backward compatibility 
and for creating clever new possibilities of mixing 
traditional and newer styles. 

4.f. @ - Applied To Operator 

To apply a function or set of functions to a set of 
values, we use the APPLIED TO operator, 
indicated by @.  

54.  1..360@DSIN 

gives you a list of SIN(x) values for input ranging 
from 1 to 360. 

The @ operator can be a powerful ally when mixed 
with the concept of Combinatorial Arguments detailed 
below. 

4.f.i. COMBINATORIAL ARGUMENTS  

The @ operator differs from a simple call of a 
function on a set with a simple twist. The @ 
operator treats input data set as Combinatorial Set.  

That is, in [1..4,2..3]@SUM, the SUM function is 
applied to COMBINATIONS of values in the 
two sets, namely [1,2,3,4] and [2,3] (denoted by 
1..4 and 2..3).  

Note that this is not the same as the set 
[[1,2,3,4],[2,3]] being treated as input to the SUM 
function. The following example makes this clear: 

55.  [1..4,2..3]@SUM 

                     -             SUM  

          1          2               3  

          1          3               4  

          2          2               4  

          2          3               5  

          3          2               5  
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          3          3               6  

          4          2               6  

          4          3               7  

Every combination from each set 1..4 and 2..3 are paired 
as parameters into the SUM function in the listing 
above. This powerful function enables users to 
avoid loop-in-loop constructs that are often seen in 
C-like programming (e.g., for i=1..4 and for j=2..3).  

By extension, combinatorial arguments can be 
extended to inner loops of ANY depth (i, j, k, l, m, 
… etc) 

We can also reverse two sides of the @ operator, as 
given below where the function SUM is applied to 
the combinatorial data given on the right, giving the 
same result as Example  55. 

56.  SUM@[1..4,2..3]    

Compare this with Example  31, which is similar but 
with simple application of SUM to the full set of 
input, without any combinatorial loop. 

4.f.ii. APPLYING COMBINATORIAL SET TO SET OF 

FUNCTIONS 

In z^3, data sets can be collected into any number of 
set or combinations, and applied to any number of 
functions. It does not matter whether data or 
functions are given first.  

The following examples shows this expressive 
power of z^3, with data and/or functions separated 
by comma, which behaves as a list operator.  

57.  [1..4,2..3]@[SUM,AVG] 

              -        SUM          AVG 

   1          2          3          1.5 

   1          3          4            2 

   2          2          4            2 

   2          3          5          2.5 

   3          2          5          2.5 

   3          3          6            3 

   4          2          6            3 

   4          3          7          3.5 

The inputs are generated and applied in a natural 
order iteratively. This makes z^3 keep its readable 
form, without needing a lot of complex looping 
expressions. 

4.f.iii. SIMPLE FUNCTION REPRESENTATIONS 

Functions can be made on the fly using expressions 
within quotes as given below (example: "x^2+5*y")  

58.  [1..4,2..3]@[SUM,AVG, "x^2+5*y"] 

 

59. [1..4,2..3]@[SUM,AVG,"x^2+67*y","SIN(COS(z

))"] 

 

Here, the data set on the left are passed to the set of 
functions listed on the right.  

In the functions that are expressed as strings such 
as in ("x^2+67*y") in Example  Error! Reference 
source not found., the symbols x and y represent 
the first and second of the combinatorial 
arguments.  

This feature allows users to express content of a 
function in the most natural manner, without 
complex function declaration decorations. 

4.f.iv. EASY MULTI-LINE REPRESENTATION OF 

Z^3 CODE  

Note that code can be split into multiple lines (using 
the Shift+Enter key) in the ZOS platform editor, as 
given in the Commands 60 and 61.  
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60.  ARRAY(2,2,2) 

 .merge( 

  ARRAY(2,2,3), 

  [SUM,AVG,"x+y^2-1"] 

 ) 

 

The examples above indicate .merge() member 
function, that operates on two sets (one on the left, 
and one as a parameter), merged with the functions 
listed as second parameter of the member function. 

In the Example 61, .rand() function fills the set 
created using the ARRAY function. Then the 
across() operation takes each such cell combination 
from each matrix, and then applies the list of 
functions [SUM, AVG] given as the second 
parameter. 

 

61.  ARRAY(2,2,2) 

 .rand() 

 .across( 

  ARRAY(2,2,3) 

   .rand(), 

  [SUM,AVG] 

) 

The partial output is given below. 

 

4.f.v. USING || AS "SUCH THAT" BOOLEAN 

EXPRESSIONS  

We can check a set against logical expressions, like 
in the following examples: 

62.  4..8|x>5| 

false false true true true 

Here, the range of values is tested for a logical 
conditional test, to give truthiness of the check in a 
simple set series.  

In Example  62, the set 4..8 is passed on to the check 
x>5. The result is a Boolean set of true and false. 

63.  1..100|x>5?x:55| 

In Example  63, 1..100 is passed on to the check x>5. 
The result is the value itself or 55, based on the 
result of the check on each specific element.  

It is possible to compound conditions in a 
traditional sense easily with logical operands like 
&& (and logical check) as follows: 

64.  1..4|x>2&&x<4| 

false false true false 

4.g. Associative Set/Composite Set As 
Objects 

Object instances can be expressed easily using 
simple implicit notation. There is no need for 
explicit constructors or definitions as may be required in 
conventional object oriented languages. 

65.  A1={"a":5, "b":2, 

"c":"something"} 

{ 

    "a": 5, 

    "b": 2, 

    "c": "something" 

} 

A1 is an instance of Object, with initial values given, 
in lines with Object-Oriented (OO) terminology. 
The qualification of members (whether it be a value 
or a function) is coded with traditional (.) operator. 
The result is an object meant for further processing. 
However, members of this object are now 
accessible using A1.a. For example: 

66.  A1.a 

   5 
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67.  A1.b 

   2 

68.  A1.c 

   something 

It is also possible to use member names in quotes 
as indexes, as given below: 

69.  A1["a"]  

   5 

70.  A1["b"]  

   2 

71.  A1["c"] ="anything" 

   anything 

The following example demonstrates these 
properties: 

72.  factorial(5) 

   120 

The qualified member is used as an argument to a 
function: 

73.  factorial(A1.a) 

120 

Assignments are straightforward. The type of the 
variable value is taken implicitly from the right hand 
side (RHS) value.  

The variable represented by the left hand side 
(LHS) name, is dynamically recast to the type of the 
assigned new value. 

For example, in the object A1, c which was 
initialized as a string before, can now be used as a 
place holder for a function: 

74.  A1.c=function(a){return(a+8)} 

(a) 1  

The output indicates that this is a function with a 
single parameter a. 

Now the A1.c represents a function, which can be 
called as given below. 

75.  A1.c(3) 

   11 

Similarly, b in A1 can be assigned to the SIN 
function with no extra coding: 

76.  A1.b=SIN 

Now, we can call A1.b as a function, which then 
gives the SIN value of 30, in radians. 

77.  A1.b(30) 

   -0.9880316240928618 

A similar example of object assignment and 
member access is given below. 

78.  B1={"aa":2, "f1":"apple", 

"f2":"peach"} 

{ 

    "aa": 2, 

    "f1": "apple", 

    "f2": "peach" 

} 

The members can be qualified with the initial LHS 
ids for reference, as usual: 

79.  B1.aa 

   2 

80.  B1.f1 

   apple 

81.  B1.f2 
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   peach 

4.g.i. GLOBAL ASSIGNMENTS USING <<<  

The following example demonstrates the use of 
attribute assignment operator <<< to assign a set of 
functions to an attribute of an operator: 

82.  ["orange"]<<<[[SIN,COS]] 

   orange 

Now this assigned a global variable called orange, 
that now contains a set of functions SIN and COS.  

Please note that SIN and COS take input in radians. 
DSIN and DCOS take input in degrees. 

This set of functions in orange is applied to a set of 
numbers 1..4, in Example  83.  

83.  1..4@orange 

 

 

Also note that orange is now a global variable in the 
environment for easy use (as a set or collection of 
functions, which then becomes a powerful object to 
use to apply multiple functions at once). 

5. Functions 

In most languages, a function like SIN takes one 
input and gives a scalar output. In z^3, the same 
SIN function behaves in more powerful ways. If 
given a scalar SIN will give a scalar result like other 
languages, but if given an arbitrary set of inputs, z^3 
will give a similar set of outputs.  

 

Now, more interestingly, functions can be: 

(1) Simple member functions of a set, as 
in objects as member 
functions, or  

(2) Set of functions, that provides an 
elegant organization. 

5.a. Set of Functions 

It is possible to use the expression in (Example  84) 
as a one line computation, or decomposed into 
multi-line computation (Commands 85 and 86). 

84.  1..4@["x^2", "x*2", "x+2"]  

The example below, demonstrates the declaration 
of three functions, each with one parameter x, 
collected as a set and assigned to A for easy reuse.  

85.  A=["x^2", "x*2", "x+2"] 

POWER(x,2) x*2 x+2 

In z^3, the data provided to such sets of functions 
can be a set (or set of sets) of any breadth and depth.  

The set of three functions are now invoked on a 
range of values 1..4 below: 

86.  1..4@A 

 

Note that explicit looping constructs are avoided. 
The logic represented by the set of functions is 
applied to each data value in a sequence 1..4.  

This style of applying a set of data to a set of functions 
demonstrates z^3's functional approach (i.e., writing 
WHAT is to be computed, and hiding HOW it is 
computed). 

Most library functions in z^3, 

evaluates to a scalar value or a Set 

of values, as and when needed. 
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The built-in FOREACH function (same as FOR 
function) can also be used to achieve combinatorial 
arguments and set of functions in a straightforward 
manner5. 

87.  FOREACH(1..2,2..4, "z=x*3*y") 

x y z 

1 2 6 

1 3 9 

1 4 12 

2 2 12 

2 3 18 

2 4 24 

It is clear that the data set given as arguments are 
used from left to right6.  

The first set 1..2 behaves as the outer loop index 
values, and the secondary set 2..4 behaves as the 
inner increments, for x and y values respectively, 
which are associated from left to right.  

88.  FOR(1..2,2..4, "z=x*3*y") 

x y z 

1 2 6 

1 3 9 

1 4 12 

2 2 12 

2 3 18 

2 4 24 

 

As the following example clearly demonstrates that 
FOREACH is a rich function that takes data set in 
multiple forms, and sets of functions collected in a 
set: 

 

                                                 

5 Since lowercase ‘for’ is a standard keyword in some 
platforms, FOREACH function is provided to side-step any 
conflict in case of case-sensitivity. 

89.  FOREACH(INTS(3),[SIN,COS]) 

 

90.  FOR 1..3 SIN 

  

The parenthesis and commas can be dropped as in 
the previous example, if it would not cause a 
syntactic ambiguity. 

91.  FOR 1..4 "x*x" 

x TEMP17 

1 1 

2 4 

3 9 

4 16 

5.b. Simple Reusable Function 
Declarations 

A function can be declared as follows: 

92.  Y1:=u*t+0.5*a*t*2 

Function Y1 with parameters: (u,t,a) is defined 

as u*t+0.5*a*t*2 

6 Any extra parameters are simply ignored, while using the 
matching values to compute the functions. 

7 Please note that unnamed functions are given temporary 
names (like TEMP1) in outputs. 
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Instantly, a function Y1 is created, with parameter 
u, t and a, with parameter 8 names which are 
automatically detected by z^3, in order of their 
appearance.  

If there are similar names existing in the 
environment, z^3 will rename the function.  

5.b.i. COMBINATORIAL ARGUMENTS 

The following gives an example of series and 
combinatorial arguments being used to replace the use 
of a spreadsheet to do such calculations! 

93.  FOR(1..3,2,3,Y1) 

 

Let’s check what would happen if more data values 
were provided as parameters, than that were defined 
in the function Y1 (which expects only 3 parameters 
u, t and a). 

94.  FOR(1..3,2,3,8,Y1) 

 

As expected, the fourth parameter value 8 is ignored 
and the computation is completed with the first 
three parameters of the data set. 

Data can be simply listed following the function 
with a space as a separator as below.  

                                                 

8 Global variables can be accessed from the inside of simple 
function definitions. However, to keep simplicity of variable 
names in local scope, any global variable up to 3 characters 

95.  FOR 1..3 2 3 8 Y1 

If the user prefers to list the data in a parenthesis, 
data may be listed with a comma (,) operator as a 
separator. Consider an example of counting of 
PRIMES, up to a certain number. With z^3 
notation, we can repeat this process for any set of 
numbers. In the example below, series of odd 
numbers (from 1 to 10) are created, and the count 
of primes that are within 1 to that number are then 
calculated.  

96.  FOR 1..10..2 "COUNT(PRIMES(x))" 

 

The ranges can now be expanded from 1..10 to 
1..100000..10000, demonstrating powerful ways of 
combining z^3 notations to achieve complex 
expressive calculations, without sacrificing 
simplicity and scalability..  

97.  

FOR 1..100000..10000 "COUNT(PRIMES(x))" 

 

in length referenced inside the body of the function would need 
an _ (underscore) prefixed to its name. 
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5.c. Set $, $$, $$$ and $_ Member 
Functions 

A set of functions can be invoked in every element 
in a set by using the powerful .$ (dollar) member 
function.  

98.  EVENS(4).$("x+2") 

2 4 6 8 

In this case, four even numbers are generated by the 
EVEN function, which are then incremented by 2. 

99.  1..5.$("1/x") 

1 0.5 0.3333333333333333 0.25 0.2            

The above output lists the reciprocals of numbers 
1..5. 

Remember that .$ is not quite the same as .map 
functions that you may be familiar with, since .map 
operations only operate on the children in the first 
level of the array or set. On the other hand, .$ operates 
on every element in the set, recursively. 

100.  SUM(EVENS(4).$("x+2")) 

   20 

The result of .$ is also a set, and can be fed into 
further member functions to operate on, such as 
SUM shown above. 

Now, consider the following command to add 
numbers from 1 to 10. 

101.  SUM(1..10) 

   55 

The member function (.$_) (dollar-underscore) can  be 
used to apply an aggregate function (such as SUM) 
to the entire set, resulting in a single functional 
result.  

102.  1..10.$_(SUM) 

55 

The member function (.$$) (dollar-dollar) applies the 
set of functions provided on each row (by row) of the 
set.  

103.  MAGICSQUARE(4).$$(SUM) 

34 

34 

34 

34 

The member function .$$$ (dollar-dollar-dollar) works 
along columns, compared to (.$$) that operates on rows. 
The member function .$_ (dollar-underscore) function 
works across the entire set. 

104.  1..10.$_(SUM) 

 55 

5.d. Set Functions and Set Programming 

The use of sets as collections of statements and 
function calls creates an interesting possibility of 
program segments that is self-explanatory.  

105.  V:=[a,b,[SIN(a),COS(b),SIN(b),COS(a)]] 

Function V with parameters:(a,b) is defined 

as [a,b,[SIN(a),COS(b),SIN(b),COS(a)]]  

The above function definition creates a function 

when called gives the input a and b, as well as the 

result, all as ONE set in the output!  

This creates the possibility of holding data sets that 

carry inputs and outputs of a process for reporting 

uses or further analysis. Such composites create a 

rich expression possibility for calculations in z^3. 

106.  V(1,2) 

 

Here, the results shows inputs 1 and 2 (a and b in 
the set program), followed by the array of results from 
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the the computation of the set of functions 
[SIN(a),COS(b),SIN(b),COS(a)] in the set program.  

Such functions defined as set, gives unique expression 
power to programmers. In the example in Command 
106, the input is effectively carried along with the 
output. 

Let us consider some powerful ways to create 
functions. 

107.  F1:=[a+b,a-b] 

Function F1 with parameters:(a,b) is defined as [a+b,a-

b] 

The function F1 is now defined, and calling it is 
simple. 

108.  F1 1 2 

3 -1 

Another example that demonstrates the expressive 
power: 

109.  F2:=[a,b,a+b] 

     Function F2 with parameters:(a,b) is defined as [a,b,a+b] 

110.  F2 5 2 

5 2 7 

111.  F2(3,9) 

3 9 12 

112.  F2 2*3 5 

6 5 11 

As can be clearly seen above, the outputs carry the 
inputs as well as the results, creating absolutely 
interesting possibilities of handling data, as well as 
avoid unnecessary complexity in programming.  

113.  F3:=[SUM(a..b..c)] 

     Function F2  with parameters:(a,b,c) is 

defined as [SUM(FROMTO(CONCAT(a,b),c))] 

This effectively creates a function F3 that can add 
up series between a and b, of any interval c. 

114.  F3 1 10 2 

   25 

The sum of 1+3+5+7+9 is obtained as 25 by calling 
F3 with the parameters 1, 10 and 2.  

The following shows another interesting use of set 
Programming, coupled with || function definition 
(Section 4.e).  

115.  1..4|x^2+x^3| 

2 12 36 80 

Here the function x^2+x^3 itself is a function 
expression. The result of this function is applied on 
the series 1 to 4.  

5.e. Advanced computation of lists 

Trigonometric calculations are useful in a wide 
varied domains, such as electrical engineering, map 
projections etc. These require computation of lists. 
Series of values thus generated are heavily used 
during further computation, as inputs, as well as 
loop control variables; but most languages fail to 
support quick and easy generation of common 
collections and series.  

z^3 makes the generation of such lists incredibly 
easy, starting with x..y..z notation such as in 1..10..3. 

Generation of commonly used angles, in radians or 
degrees, can be easily achieved as given below. 
Terms like DEG360BY45 can give easy listing of 
360degrees divided by 45degree segments etc. for 
easy use. Please note the use of the TRANSPOSE 
operator ~, used here for vertical display of the 
generated sets. Similarly rad2piby4 (case does not 
matter) can be used to divide radians into 
appropriate pieces. These generated values are 
automatically enabled for units. It helps 
tremendously with trigonometric calculations etc. 

116.  DEG360BY45~ 
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0° 

45° 

90° 

135° 

180° 

225° 

270° 

315° 

360° 

117.  RAD2*PiBY4~ 

0㎭ 

1.5707963267948966㎭ 

3.141592653589793㎭ 

4.71238898038469㎭ 

6.283185307179586㎭ 

 

More examples and details of Series Generation are 
given in Appendix IV Series Generation. 

The series computed can be used as in cases like: 

118.  DEG360BY45@DSIN 

Number DSIN 

0° 0 

45° 0.7071067811865475 

90° 1 

135° 0.7071067811865476 

180° 1.2246467991473532e-16 

225° -0.7071067811865475 

270° -1 

315° -0.7071067811865477 

360° -2.4492935982947064e-16 

  

5.f. Series computation 

The design of z^3 attempts to provide natural 
language interfaces, with terse and powerful 
notations.  

Hence SUM 1..4 can also be implied by the 
following natural language expressions.  

119.  ADD 1 to 4 

   10 

1 to 4 implies all numbers from 1 upto 4 (i.e., 1, 2, 
3 and 4).  

Note that this is not the same as ADD 1 4 which 
should give the result 5.  

A series by an increment can be expressed using the 
x to y by z notation. 

120.  ADD 1 to 4 by 2 

4 

Obviously, the series here can also be represented 
as ADD(1..4..2) 

6. Built-in Functions in z^3 

z^3 has powerful prebuilt function libraries. This 
collection is continuing to grow daily; and already 
these number into the thousands.  

These range from functions in Mathematical, 
Statistical, Financial, Engineering, Medical, 
Database, and many other domains.  

Several of these standard library functions are 
documented at http://wiki.zcubes.com  

Consider some interesting available functions. 

6.a. Permutations and Combinations 

Permutation relates to the act of arranging all the 
members of a collection into some sequence or 
order; whereas Combination is a way of selecting 
items from a collection, such that the order of 
selection does not matter. 

z^3 comes with functions to list permutations and 
combinations of items, as well as techniques to 
count and list them. 

 

121.  PERMUTATIONS(1..3) 

http://wiki.zcubes.com/
https://en.wikipedia.org/wiki/Set_%28mathematics%29
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Ordered_set
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1 

 

2 

 

3 

 

1 

 

3 

 

2 

 

2 

 

1 

 

3 

 

2 

 

3 

 

1 

 

3 

 

1 

 

2 

 

3 

 

2 

 

1 

 

All possible permutations of 1, 2 and 3 are shown 
above. 

122.  PERMUTATIONS(1..3,2) 

1 
 

2 
 

1 
 

3 
 

2 
 

1 
 

2 
 

3 
 

3 
 

1 
 

3 
 

2 
 

All possible permutations of 1, 2 and 3, in sets of two 
elements, are shown above. 

123.  COMBINATIONS(1..3) 

   1 

   2 

   3 

All possible combinations of 1, 2 and 3, of one 
element are shown. Next, all possible combinations 
of 1, 2 and 3, of two elements are shown. 

124.  COMBINATIONS(1..3,2) 

1 2 

1 3 

2 3 

6.a.i. COMMON NUMBER SERIES 

EVENS is a function that returns x even numbers, 
for a requested x.  

125.  EVENS 4 

0 2 4 6 

The series thus generated can be input to functions 
as SUM, or vice versa. 

126.  SUM(EVENS(4)) 

    12 

127.  EVENS(SUM(4)) 

0 2 4 6 

The following creates a jagged collection of 1, 2, 3 
and 4 even numbers. 

128.  EVENS(1..4) 

 

6.a.ii. SIMPLE NUMBER STATS 

STATS is a powerful function that applies a lot of 
Statistical Functions on a series of numbers. 

129.  STATS(1..100) 

COUNT 100 

SUM 5050 

AVERAGE 50.5 

VAR 841.6666666666666 

STDEV 29.011491975882016 

VARP 833.25 

STDEVP 28.86607004772212 

MIN 1 

MAX 100 

MEDIAN 50.5 
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MODE #N/A 

      

Let us look at a larger collection of numbers. 

130.  STATS(1..1000) 

COUNT 1000 

SUM 500500 

AVERAGE 500.5 

VAR 83416.66666666667 

STDEV 288.8194360957494 

VARP 83333.25 

STDEVP 288.6749902572095 

MIN 1 

MAX 1000 

MEDIAN 500.5 

MODE #N/A 

 

It scales-up for more complex needs easily, by 
considering the STATS function call for 1, 301, 601, 
and 901 in a series: 

131.  FOR 1..1000..300 "STATS(1..x)" 

Now, Example 96 is scaled below to a larger range 
of data. 

132.  FOR 100..1000..300 

"COUNT(PRIMES(x))" 

x TEMP1 

100 25 

400 78 

700 125 

1000 168 

z^3 scales-up to handle larger range (though limited 
by your computers capacity), as shown in the 
following computation: 

133.  FOR 1...10000000 

"COUNT(PRIMES(x))" 

x TEMP1 

1 0 

2 1 

4 2 

8 4 

16 6 

32 11 

64 18 

128 31 

256 54 

512 97 

1024 172 

2048 309 

4096 564 

8192 1028 

16384 1900 

32768 3512 

65536 6542 

131072 12251 

262144 23000 

524288 43390 

1048576 82025 

2097152 155611 

4194304 295947 

8388608 564163 

Note the “three dots” operator between 1 and 
10000000, which signifies the generation of a 
geometric series.   

Please try:    
 FOR 1...10000000 "COUNT(PRIMES(x))" 
  
as a first attempt to test the capacity of your device. 

6.a.iii. SET OPERATIONS 

Several operations are provided to operate on sets. 
Some examples with set-theoretical operations are 
given below: 

134.  UNION 1..3 4..5 

   1 

   2 

   3 

   4 

   5 

135.  DIFFERENCE 1..5 1..3 

   4 

   5 

136.  INTERSECTION 1..5 1..3 

   1 

   2 

   3 
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7. z^3 Simple Examples 

z^3 language, while being based on global 
standards, is unlimited in scope by being open to 
extension. It does not take a single approach to 
problem expression and solution, but many 
approaches, which result in highly flexible possibilities 
of terse and verbose expressions based on user skill 
and style.  

Several example real-world problems are described 
in sections below. 

7.a. Sets and Related Structures 

7.a.i. MATRICES 

Set (or sets of sets) of complex dimensions can 
represent conventional matrix definitions in an 
effortless manner. z^3 provides a collection of 
powerful matrix functions and manipulation 
capabilities.  

7.1.1.1. Matrix Generation 

With z^3, a wide variety of matrices can be 
generated with ease.  

In Section 4.c (Matrix  Operator(||)), generation of a 
simple set is described. For example, 

137.  |4,2| 

       0       0 

       0       0 

       0       0 

       0       0 

|4,2| generates a simple 4x2 matrix. 

Known types of matrices of required size can be 
generated using the MATRIX (or MATRIXWITH) 
function. For example, it is very common to fill a 
matrix with “positive”or “zero” or “negative” 
values as needed as follows: 

138.  MATRIXWITH(4, "positive") 

  42.675436730496585  20.18217903096229 42.50673889182508  9.618869726546109 

   91.79219712968916  92.56706861779094 79.73511724267155 26.351151429116726 

   84.20511102303863 17.219695332460105 34.37458740081638 37.503470783121884 

  1.1728932848200202 10.188973206095397 36.16558900102973 27.639518934302032 

139.  MATRIXWITH(4, "negative") 

-42.675436730496585 -20.18217903096229 -42.50673889182508  -9.618869726546109 

 -91.79219712968916 -92.56706861779094 -79.73511724267155 -26.351151429116726 

 -84.20511102303863 -17.219695332460105-34.37458740081638 -37.503470783121884 

-1.1728932848200202 10.188973206095397 -36.16558900102973 -27.639518934302032 

 

140.  MATRIXWITH(4, "zero") 

       0       0       0       0 

       0       0       0       0 

       0       0       0       0 

       0       0       0       0 

     A matrix of size 4 of positive integers is 
generated below. 

141.  MATRIX (4, "positive:integer") 

      85      57     100      65 

      47     100      48      86 

      18      28      78      92 

      95       2      35     100 

Another example of a matrix of size 4 of negative 
integers is equally easy. 

142.  MATRIX (4, "negative:integer") 

    -100     -39     -76     -82 

     -44     -32      -8      -4 

     -36     -88     -73     -66 

     -73     -87     -27     -25 

 

Similarly, a matrix of 4x4 size of integers. 

143.  MATRIX (4, "integer") 

      -2     -40     -64     -84 

      88      88     -66      30 

      66     -16      64     -20 

     -45      96      88     -87 

Similarly, a matrix of 4x4 size of Boolean values (0 
or 1). 

144.  MATRIX(4, "logical") 
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       0       0       1       1 

       0       1       1       0 

       0       0       1       0 

       1       0       0       1 

145.  MATRIX(4, "alternant",1..10, 

"[i,j]") 

       0 0      0 1       0 2       0 3 

       1 0      1 1       1 2       1 3 

       2 0      2 1       2 2       2 3 

       3 0      3 1       3 2       3 3 

146.  MATRIX(4, "alternant",1..10, "i-

j") 

       0      -1      -2      -3 

       1       0      -1      -2 

       2       1       0      -1 

       3       2       1       0 

More special matrices can also be generated as 
described below below. 

7.1.1.2. Hilbert Matrix 

The Hilbert matrix is a square matrix with entries 
being the unit fractions.  

For example, Hi,j = 1 / i+j-1.  

So, 2x2 Hilbert matrix is     

1     1/2 

1/2   1/3 

 

For n, it is a square matrix nxn with the values as  

1,  1/2,  1/3,  1/4,  . . ., 1/n 

1/2,  1/3,  1/4,  1/5,  . . .,  1/n-1 

1/3,  1/4,  1/5,  1/6,  . . .,  1/n-2 

.  . . 

1/n,  1/n-1,  1/n-2,       . . .,  1/2n-1 

In z^3, simply calling MATRIX function with 
arguments “hilbert” and size will provide the result: 

147.  MATRIX("hilbert",2) 

        1                0.5 

      0.5 0.3333333333333333 

148.  MATRIX("hilbert",4) 

 

7.1.1.3. Hermitian Matrix 

Hermitian Matrix (or self-adjoint matrix) is a square 
matrix with complex entries that is equal to its 
own conjugate transpose, that is, the element in 
the i-th row and j-th column is equal to the complex 
conjugate of the element in the j-th row and i-th 
column, for all indices i and j: In mathematical 
representation: 

 or  

Here is an example: 

149.  MATRIX("hermitian",3) 

74 79+ⅈ39 
 

96+ⅈ36 
 

79-ⅈ39 
 

52 -20+ⅈ48 
 

96-ⅈ36 
 

-20-ⅈ48 
 

77 

 

i. Hankel Matrix 

The Hankel matrix (or Catalecticant matrix), named 
after Hermann Hankel, is a square matrix with 
constant skew-diagonals (positive sloping 
diagonals), e.g. 

 

150.  MATRIX("hankel",3) 

0.5082476452709008 0.8938533218532763 0.8938533218532763 

0.8938533218532763 0.8938533218532763 0.5082476452709008 

0.8938533218532763 0.5082476452709008 0.17844765487260217 

7.a.ii. TOEPLITZ MATRIX 

The Toeplitz matrix or diagonal-constant matrix, 
named after Otto Toeplitz, is a matrix in which 
each descending diagonal from left to right is 
constant. The Hankel matrix above is closely related 
to the Toeplitz matrix (which is an upside-down 
Hankel matrix). 

http://en.wikipedia.org/wiki/Hilbert_matrix
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Complex_conjugate
http://en.wikipedia.org/wiki/Complex_conjugate
http://en.wikipedia.org/wiki/Hankel_matrix
http://en.wikipedia.org/wiki/Hankel_matrix
http://en.wikipedia.org/wiki/Hermann_Hankel
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Toeplitz_matrix
http://en.wikipedia.org/wiki/Toeplitz_matrix
http://en.wikipedia.org/wiki/Otto_Toeplitz
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Toeplitz_matrix


ZCubes, Inc. 

24 

 

 

For instance, the following matrix is a Toeplitz 
matrix in z^3: 

151.  MATRIX("toeplitz",3) 

0.08108029455585108 0.7705726775647403 0.06162740141092149 

0.08108029455585108 0.08108029455585108 0.7705726775647403 

0.7705726775647403 0.08108029455585108 0.08108029455585108 

152.  MATRIX("toeplitz",4,1..4) 

1      2      3       4 

1      1      2       3 

2      1      1       2 

3      2      1       1 

7.1.2.1. Hadamard Matrix 

Named after the French mathematician Jacques 
Hadamard, a square matrix whose entries are either 
+1 or −1, and whose rows are mutually orthogonal, 
is called a Hadamard Matrix.  

In geometric terms, this means that every pair of 
two different rows in a Hadamard matrix represent 
two perpendicular vectors.  

In combinatorial terms, it means that every pair of 
rows have matching entries in exactly half of their 
columns and mismatched entries in the remaining 
columns.  

153.  MATRIX("hadamard",3)  

1 1 1 1 

1 -1 1 -1 

1 1 -1 -1 

1 -1 -1 1 

 

7.1.2.2. Vandermonde Matrix 

Vandermonde Matrix, named after Alexandre-
Théophile Vandermonde, is a matrix with terms of 
a geometric progression in each row, i.e., 
an m × n matrix. 

 

 

In z^3, the following is an example of 
Vandermonde matrix:  

154.  MATRIX("vandermonde") 

1 0.098985958378762

 0.009798219956162004 

1 0.8950120634399354 0.801046593703011 

1 0.9542551881168038 0.9106029640478366 

 

155.  MATRIX("vandermonde",4,2) 

1      2      4       8 

1      2      4       8 

1      2      4       8 

1      2      4       8 

 

156.  MATRIX("vandermonde",4,1..4) 

1      1      1       1 

1      2      4       8 

1      3      9      27 

1      4     16      64 

7.1.2.3. Upper and Lower-Triangular matrix and Symmetric matrix 

In Upper Triangular Matrix, all elements under its 
diagonal are zero. In Lower-Triangular Matrix, all 
elements over the main diagonal are zeroes. In 
Symmetric Matrix both sides of the diagonal 
elements are filled, but with elements around the 
main diagonal symmetric in value.   

157.  MATRIX("upper-triangular",6) 

-20 -74 9 66 32 57 

0 52 -47 60 26 -87 

http://en.wikipedia.org/wiki/Hadamard_matrix
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Jacques_Hadamard
http://en.wikipedia.org/wiki/Jacques_Hadamard
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Orthogonal
http://en.wikipedia.org/wiki/Perpendicular
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Vandermonde_matrix
http://en.wikipedia.org/wiki/Alexandre-Th%C3%A9ophile_Vandermonde
http://en.wikipedia.org/wiki/Alexandre-Th%C3%A9ophile_Vandermonde
http://en.wikipedia.org/wiki/Matrix_(math)
http://en.wikipedia.org/wiki/Geometric_progression
http://en.wikipedia.org/wiki/Symmetric_matrix
http://en.wikipedia.org/wiki/Triangular_matrix
http://en.wikipedia.org/wiki/Symmetric_matrix
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0 0 -28 -31 -49 -70 

0 0 0 -18 -70 63 

0 0 0 0 59 9 

0 0 0 0 0 69 

 

158.  MATRIX("lower-triangular",6) 

-4 0 0 0 0 0 

10 5 0 0 0 0 

-40 -82 10 0 0 0 

-7 100 99 -74 0 0 

34 39 46 17 87 0 

68 -4 65 57 0 10 

 

159.  MATRIX("symmetric",6) 

15 95 -31 30 -5 14 

95 -13 98 -35 70 -33 

-31 98 -29 48 87 90 

30 -35 48 73 16 -72 

-5 70 87 16 98 68 

14 -33 90 -72 68 97 

The hyphen between upper-triangular is optional. 

7.1.2.4. Pascal Matrix 

The elements of the symmetric Pascal matrix are 
the binomial coefficients, i.e. 

 

In other words: 

 

160.  MATRIX("pascal",5) 

       1       1       1       1       1 

       1       2       3       4       5 

       1       3       6      10      15 

       1       4      10      20      35 

       1       5      15      35      70 

7.a.iii.  MATRIX SIZES 

SIZE function can be used to find the size of sets. 

161.  SIZE(|4x5|) 

 4 5 

A second parameter can be used to indicate the size 
is to be obtained in a specific dimension.  

162.  SIZE(|2x3|,0..1) 

 

Ther result gives the size along dimensions 0 and 1, 
of an array of size 2x3. 

7.a.iv. MATRIX OPERATIONS 

The following code is used to generate a 3 by 3 set 
filled with 3. The RANDOM function is then called 
on each of the members using the $ function fills 
each element with random values within 0 through 
3. As you can see MX is then assigned with the 
result. 

163.  MX=ARRAY(3,3,3) 

3 3 3 

3 3 3 

3 3 3 

 

164.  MX=ARRAY(3,3,3).$(RANDOM) 
0.10359240020625293 0.08560038451105356 0.39424868300557137 

0.7169222580268979 2.0910016105044633 0.5476922818925232 

0.12873755511827767 0.31074305064976215 2.0048518725670874 

The matrix MX is now added along a row using 
MROWOP using the + operator.  

165.  MROWOP(MX,"+",true) 

0.5834414677228779 0.10359240020625293 0.1891927847173065

 0.5834414677228779 

3.3556161504238844 0.7169222580268979 2.8079238685313612

 3.3556161504238844 

2.4443324783351272 0.12873755511827767 0.4394806057680398

 2.4443324783351272 

This result is interesting, as much as it is powerful. 
The true value as the second parameter indicates that 
the cumulative and running result as each element is 

http://en.wikipedia.org/wiki/Binomial_coefficient
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operated on (as it applies columns in each row) are 
listed. Only cumulative result is provided if the third 
parameter is empty is false. 

166.  MROWOP(MX,"+",false) 

0.5834414677228779 3.3556161504238844 2.4443324783351272 

The same can be done for each column, with the 
top row indicating the cumulative result, and rows 
below this row showing results (when each element 
was added by row to the next element) in the 
column. 

167.  MCOLOP(MX,"+",true) 

0.9492522133514285 2.487345045665279 2.946792837465182 

0.10359240020625293 0.08560038451105356 0.39424868300557137 

0.8205146582331508 2.176601995015517 0.9419409648980945 

0.9492522133514285 2.487345045665279 2.946792837465182 

168.  MATRIXPACK(1..5,2) 

1 2 

3 4 

5  

MATRIXPACK splits the matrix into elements of 
sizes given as parameter. Here it divides matrix MX 
into pieces of 2 elements. 

7.a.v. MATRIX ARITHMETIC OPERATIONS 

Simple Matrix addition, multiplications, negation, 
etc. can be obtained using MATRIX related 
functions such as below. 

169.  MMULT([1,2,3],[[4],[4],[2]])        

18 

Note the use of brackets for the vertical matrix as 
in [[4],[4],[2]] in Example  169.  

1..3**3 is a simple notation to duplicate a set, by a 
requested number of times, indicated by **. In this 
case, 1..3 will be replicated 3 times.  

MMULT then operates on the two sets as below. 

170.  MMULT(1..3**3,1..3**3) 

       6      12      18 

       6      12      18 

       6      12      18 

MMULT, does scalar multiplication of the 
argument is a scalar, with the matrix that is provided 
in the other argument. 

171.  MMULT(1..10,2) 

 

MATRIXADD conducts simple addition of 
matrices. 

172.  MATRIXADD(1..5,1..5) 

 

 

MATRIXNEGATE multiplies each element by -1, 
or effectively negates the elements. 

173.  MATRIXNEGATE(ARRAY(4,4,10)) 

     -10     -10     -10     -10 

     -10     -10     -10     -10 

     -10     -10     -10     -10 

     -10     -10     -10     -10 

MEQUAL checks each element in a set to see if it 
matches a provided value, in this case a 10x10 
matrix filled by 2, is checked against 2. 

174.  MEQUAL(ARRAY(10,10,2),2) 

true 

7.b. Vector Operations 

Dot Product or Scalar Product of matrices can be 
conducted on vectors represented as matrices or sets 
using the DOTPRODUCT (also called 
SCALARPRODUCT) function. 

175.  DOTPRODUCT(1..3,4..6) 

32 

Similarly, Cross Product or Vector Product of matrices 
can be conducted on vectors represented as 
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matrices or sets using the CROSSPRODUCT 
function. 

176.  CROSSPRODUCT(1..3,4..6) 

      -3       6      -3 

The functions CROSSPRODUCT and 
VECTORPRODUCT are the same.  

177.  VECTORPRODUCT(1..3,4..6) 

      -3       6      -3 

7.b.i. MATRIX DETERMINANTS 

In linear algebra, the determinant is a special value 
associated with a square matrix.  

For example, in a matrix that represents the 
coefficients of a System of Linear Equations, its 
determinant provides important information about 
the matrix. The system has a unique solution exactly 
when the determinant is nonzero; when the 
determinant is zero there are either no solutions or 
many solutions.  

Determinants occur throughout mathematics. In 
some cases they are used just as a compact notation 
for expressions that would otherwise be unwieldy to 
write down. 

For instance, the determinant of the matrix: 

178.  A = [2 2 1;1 3 4; 2 6 2] 

2 2 1 

1 3 4 

2 6 2 

|A| has the value as:   
(2x3x2 + 2x4x2 + 1x1x6) – (1x3x2 + 2x4x6 
+ 2x1x2) = -24  

In z^3, the determinant of a matrix A is denoted as 
det(A), det A, or DET(A).  

179.  det(A) 

-24 

In z^3, determinants of any size square matrix is 
easily calculated, as for the matrix x below 
(generated using deal member function).  

180.  x=|3|.deal() 

 

181.  det(x) 

-0.036501362405503224 

Determinant of an identity matrix is 1, as indicated 
in Example  182. 

182.  det(IM(4)) 

1 

The determinant of a randomly generated 3x3 
matrix is given below. 

183.  det(|3x3|.deal()) 

-0.0306124444199811 

7.c. Matrix Rotations 

Matrix rotation can be achieved by the 
MATRIXROTATE function. 

184.  MATRIXROTATE(|4|,1) 

       0       1       0       0 

       0       0       1       0 

       0       1       0       0 

       0       0       1       0 

185.  MATRIXROTATE(|4|,2) 

  0       0       1       0 

  0       1       0       0 

  0       0       1       0 

  0       1       0       0        

186.  MATRIXROTATE(|5|,4) 

  0       0       0       0       1 

http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Square_matrix#Square_matrices
http://en.wikipedia.org/wiki/Coefficients
http://en.wikipedia.org/wiki/System_of_linear_equations
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  0       1       0       0       0 

  0       0       1       0       0 

  0       0       0       1       0 

  1       0       0       0       0        

A simpler z^3 notation for the same is given below, 
using member functions. 

187.  |5|.rotate(4) 

0 0 0 0 1 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

1 0 0 0 0 

7.c.i. SIMPLE MATRIX MERGING WITH 

FUNCTIONS 

188.  ARRAY(10,10,10) 

  .merge(ARRAY(10,10,10)) 

  .$(RANDOM).print() 

Here two 10x10 sets, filled with 10 are merged cell 
by cell and the result is merged together. 

To enter lines with soft line-break, use Shift+Enter, 
instead of simple Enter.  

It makes it simple to provide member functions 
indented under the main object as given above. 

7.c.ii. ACROSS MATRICES MERGING WITH 

FUNCTIONS 

In z^3, .across() member function is a powerful 
operation that applies a specific function or set of 
functions on each pair of elements on the two input 
matrices.  

Consider a simple 3x3 identity matrix. 

189.  IM(3) 

1 0 0 

0 1 0 

0 0 1 

The .across() function applies SUM to the two 
identity matrices. 

190.  IM(3).across(IM(3),SUM) 

 

A more powerful example of applying a set of 
functions (SUM and AVG in the following case) on 
the each combination of elements of input matrices 
is shown next. 

191.  IM(3) 

  .across( 

   IM(3), 

   [SUM,AVG] 

  ) 

  

7.c.iii. QUICK MULTIPLICATION TABLES 

Consider the following use of the across function to 
generate a Multiplication Table in Command 192.  

In this case, the .across function is used in such a way 
as to operate on every pair of numbers between 1 
an 10. This is a simple demonstration of the .across 
operation, (which can also be used on an array of 
functions as indicated previously) to create useful 
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collections of results, such as those that can be used 
for contour plotting etc.  

192.  

1..10.across(1..10,PRODUCT).transpose() 

 

Using the power of sets, you can get the 
multiplication factors of any one number (using the 
[ ] element accessing capability). For example, the 
following command gets the multiplication table for 
the number 6 (note the 0 based indexing of sets as 
used). 

193.  1..10 

       .across(1..10,PRODUCT) 

       .transpose()[0][5] 

6 

12 

18 

24 

30 

36 

42 

48 

54 

60 

 

7.d. Puzzles and Other Interesting 
Computations 

There are several special problems and puzzles that 
are pre-solved in z^3 for enthusiasts, to analyze 
various case scenarios and to slice and dice such 
results. 

7.d.i. MAGIC SQUARE 

In recreational mathematics, a Magic Square is an 
arrangement of numbers (usually integers) on 
a square grid, where the numbers in each row, the 
numbers in each column, and the numbers in the 
forward and backward main diagonals, all add up 
to the same number.  

A magic square has the same number of rows as it 
has columns, and in conventional math notation, 
"n" stands for the number of rows (and columns) it 
has.  

Thus, a magic square always contains n2 numbers, 
and its size (the number of rows and columns it has) 
is described as being "of the order n". 

The smallest nontrivial case, a 3 × 3 grid that is a 
magic square of order 3 is shown next. 

194.  MAGICSQUARE(3) 

2 7 6 

9 5 1 

4 3 8 

 

In z^3, magic squares of any size can be created 
using the MAGICSQUARE function. The 
parameter can be given as a series, such as 
MAGICSQUARE(3..15) to have a series of 
MAGICSQUAREs of sizes 3 to 15. 

195.  MAGICSQUARE(4) 

1 15 14 4 

12 6 7 9 

8 10 11 5 

13 3 2 16 

The sum of every row, column and diagonal, which 
should be a constant value,  is called the Magic 
Constant or Magic Sum, M. Every normal magic 
square has a unique constant determined solely by 
the value of n, which can be calculated using this 
formula: 

http://en.wikipedia.org/wiki/Recreational_mathematics
http://en.wikipedia.org/wiki/Magic_square
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The row wise and column wise sum of the magic 
square elements show that for an m of 4 rows and 
columns, 4*(4^2+1)/2 = 34 would be the magic 
constant. Commands 196 and 197 indicate that row-
wise and column-wise summations of elements add 
up to a Magic Constant of 34. The .$$ and .$$$ 
member functions of sets are used to compute the 
row and column based sums. 

196.  MAGICSQUARE(4).$$(SUM) 

34 

34 

34 

34 

197.  MAGICSQUARE(4).$$$(SUM) 

34 

34 

34 

34 

7.d.ii. N-QUEENS PUZZLE 

Chess composer Max Bezzel published the Eight 
Queens Puzzle in 1848.  Franz Nauck published the 
first solutions in 1850, and also extended the puzzle 
to the n-queens problem, with n queens on a 
chessboard of n×n squares. Since then, many 
mathematicians including Carl Friedrich Gauss 

have worked on both the eight queens puzzle and 
its generalized n-queens version.  

Eight queens puzzle is the problem of placing 
eight chess queens on an 8×8 chessboard so that no 
two queens attack each other. Thus, a solution 
requires that no two queens share the same row, 
column, or diagonal.  

The eight queens puzzle is an example of the more 
general n-queens problem of placing n queens on 
an n×n chessboard, where solutions exist for all 
natural numbers n with the exception of n=2 
and n=3.  

In computer programming, the solution to this 
problem is considered a classic involving problem-
solving, algorithms, and data structures. This 
approach has several applications in scheduling, 
distributed systems, networking, etc. 

There are two explicit solutions for n=4 and the 
solutions can be obtained in z^3 as follows: 

 

198.  NQUEENS(4) 

1 

|_|Q|_|_| 

|_|_|_|Q| 

|Q|_|_|_| 

|_|_|Q|_| 

 

2 

|_|_|Q|_| 

|Q|_|_|_| 

|_|_|_|Q| 

|_|Q|_|_| 

In z^3, the user can use the NQUEEN function in 
several ways to get the solution, as well as explore 
and discover patterns associated with these 
solutions. 

199.  NQUEENS() 

The result will be 92 solutions to 8Queens problem, 
the first and last are given in the following: 
1 

|Q|_|_|_|_|_|_|_| 

|_|_|_|_|Q|_|_|_| 

|_|_|_|_|_|_|_|Q| 

|_|_|_|_|_|Q|_|_| 

http://en.wikipedia.org/wiki/Chess_composer
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http://en.wikipedia.org/wiki/Queen_(chess)
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|_|_|Q|_|_|_|_|_| 

|_|_|_|_|_|_|Q|_| 

|_|Q|_|_|_|_|_|_| 

|_|_|_|Q|_|_|_|_| 

. 

. 

. 

. 

. 

. 

. 

92 

|_|_|_|_|_|_|_|Q| 

|_|_|_|Q|_|_|_|_| 

|Q|_|_|_|_|_|_|_| 

|_|_|Q|_|_|_|_|_| 

|_|_|_|_|_|Q|_|_| 

|_|Q|_|_|_|_|_|_| 

|_|_|_|_|_|_|Q|_| 

|_|_|_|_|Q|_|_|_| 

More interestingly, you can compute and get in a 
range of data values for different sizes as follows: 

200.  NQUEENS(1..8) 

It scales-up easily, and consider sizes of chessboards 
with sizes 8..12. 

201.  NQUEENS(8..12) 

The results of Example  201 range from 352 
solutions for 8 queens upto 14200 Solutions for 12 
queens. In simpler cases, solutions could be sparse 
as follows. 

202.  1..4@NQUEENS 

1  

1 

|Q| 

 

1 Solutions 

2  

0 Solutions 

3  

0 Solutions 

4  

1 

|_|Q|_|_| 

|_|_|_|Q| 

|Q|_|_|_| 

|_|_|Q|_| 

 

2 

|_|_|Q|_| 

|Q|_|_|_| 

|_|_|_|Q| 

|_|Q|_|_| 

 

2 Solutions 

For practical purposes, the results become too large 
when it gets to a size of 19 queens. 

7.d.iii. BIRTHDAY PROBABILITY 

In probability theory, birthday probability is a 
simple yet interesting problem. The history of this 
problem is obscure. Possibly, Harold Davenport 
or Richard von Mises proposed what we consider 
today to be the birthday problem.  

This problem solves the probability of at least two 
of the n people in a room sharing a birthday. In a 
group of n people, there are 365n possible 
combinations of birthdays.  

The simplest solution is to determine the 
probability of no matching birthdays and then 
subtract this probability from 1. 

When n ≤ 365: 

 

 

In a random group of 23 people, there is actually 
about a 50–50 chance that two of them will have the 
same birthday. Sample solutions for the following 
problems in z^3 are as follows: 

203.   BIRTHDAYPROBABILITY(23,365) 

0.5131345029080766 

This is known as the birthday paradox.  In a room 
of 75 there’s a 99.9% chance of two people birth 
day matching.  

In a group of 6 people, the following gives how 
many of them celebrate their birthday in the same 
month?  

204.  BIRTHDAYPROBABILITY(6,12) 

0.7745997705740058 

http://en.wikipedia.org/wiki/Harold_Davenport
http://en.wikipedia.org/wiki/Richard_von_Mises
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The decimal value  is equivalent percentage value of 
78%. 

In a list of 40 people, it is 88%. 

205.  BIRTHDAYPROBABILITY(40) 

0.8866177230044445 

206.   BIRTHDAYPROBABILITY(10..100..10) 

Count BIRTHDAYPROBABILITY 

10 0.12721138320197134 

20 0.41972174869639556 

30 0.7061121304328839 

40 0.8866177230044445 

50 0.9666783241671075 

60 0.9925402093017472 

70 0.9987278316204606 

80 0.9998347350723671 

90 0.9999836455875729 

100 0.9999987671582301 

7.d.iv. TOWERS OF HANOI 

The Tower of Hanoi puzzle was invented by the 
French mathematician Edouard Lucas in 1883. This 
puzzle is also known as Towers of Brahma.  

The Tower of Hanoi problem is isomorphic to 
finding a Hamiltonian path on an n-hypercube.  

Suppose three rods, as shown in the figure, and 
several disks with different sizes which can slide 
onto any rod.  

The disks are arranged in ascending order of size on 
one rod, with the smallest one at the top in a stack, 
such that it makes a conical shape. 

 

The objective of the game is to move all the disks 
onto a different pole with the following conditions: 

• Only one disk can be moved at a time 

• Only the uppermost disk can be moved 
from any stack.  

• The smaller disk should always occupy the 
upper position of each stack at all times. 

The puzzle can be solved in seven moves for three 
disks. The minimum number of moves required to 
solve a Tower of Hanoi puzzle is 2^n - 1, where n is 
the number of disk.  

Hence the number of steps can be expected to 
increase rapidly, with the number of disks. Using 
z^3, number of steps to can be calculated for 
varying n: 

207.  1..100..5@"2^n-1" 

n 2n-1 

1 1 

6 63 

11 2047 

16 65535 

21 2097151 

26 67108863 

31 2147483647 

36 68719476735 

41 2199023255551 

46 70368744177663 

51 2251799813685247 

56 72057594037927940 

61 2305843009213694000 

66 73786976294838210000 

71 2.3611832414348226e+21 

76 7.555786372591432e+22 

81 2.4178516392292583e+24 

86 7.737125245533627e+25 

91 2.4758800785707605e+27 

96 7.922816251426434e+28 

When n=3, we expect 7 steps. 

208.  3@"2^n-1" 

n TEMP1 

3 7 

http://mathworld.wolfram.com/Isomorphism.html
http://mathworld.wolfram.com/HamiltonianPath.html
http://mathworld.wolfram.com/Hypercube.html
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z^3 gives the following solution for 3 disks, which 
has 7 steps. At each step it also indicates the move 
made.  

Since the number of steps can be astronomical for 
a moderate number of disks, these calculations can 
exceed the capacity of the computer quite easily.  

209.  TOWERSOFHANOI(4) 

 

In z^3, the user can use the some other objects 
(instead of numbers) like: 

210.  TOWERSOFHANOI(["cat","dog","wolf"]) 

1 ---> 3 Item: wolf 

1 ---> 2 Item: dog 

3 ---> 2 Item: wolf 

1 ---> 3 Item: cat 

2 ---> 1 Item: wolf 

2 ---> 3 Item: dog 

1 ---> 3 Item: wolf 

More detailed solution showing step-by-step 
situation can also be obtained using z^3 as follows. 
Here, the disks are replaced by cat, dog and wolf, 
and the detailed moves to solve the problem is given 
by z^3. 

211.   
TOWERSOFHANOI(["cat","dog","wolf"],true) 

 

 

The following Example  indicates the number of 
steps for each number of disks ranging from 1 to 
10, calculated after actually conducting the solution. 

212.  FOR 1..10 "TOWERSOFHANOI(x,true).length" 

x TEMP1 

1 2 

2 4 

3 8 
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4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1024 

7.d.v. FLOYDS TRIANGLE 

Floyd’s triangle is the collection of natural numbers 
arranged in a right triangle to the left. It is named 
after Robert Floyd. Each line in Floyd’s triangle has 
one more element than the previous row, and has 
consecutive numbers from the left in each row. 
The nth row in the Floyd Triangle sums 
to n(n^2 + 1)/2, same as the constant of 
an n×n magic square.  

In z^3, Floyd’s triangle displays as follows, with the 
first parameter indicating the number of rows to be 
displayed, and the second number indicating the 
limit of the natural number to be displayed. 

213.    FLOYDSTRIANGLE(20,34) 

  1 

  2   3 

  4   5   6 

  7   8   9  10 

 11  12  13  14  15 

 16  17  18  19  20  21 

 22  23  24  25  26  27  28 

 29  30  31  32  33  34  

 

214.  FLOYDSTRIANGLE(1..3) 

 

7.d.vi. FRACTALS-MANDELBROT 

Compared to the Euclidean geometry, which has a 
long history of more than 2000 years, Fractal 
geometry is very new. Benoit Mandelbrot's famous 
book The Fractal Geometry of Nature was published 
relatively recently, in 1982. Nature is full of fractals, 
like trees, river networks, lightning bolts and blood 
vessels etc. Hence, fractal patterns tend to look 
extremely familiar and natural.  

Fractals are infinitely complex patterns that are self-similar 
across different scales.  This property is called “self-
similarity”. Fractals form a never ending pattern, 
created by repeating a simple process over and over, 
in an ongoing feedback loop. 

215.    FRACTAL(20) 

 

 

In z^3, user can get varying accuracy of fractals, by 
setting the parameter of the FRACTAL call.  

The following call will create FRACTAL diagrams 
for an accuracy of 10, 100 and 1000. The quality of 

http://en.wikipedia.org/wiki/Robert_Floyd
http://en.wikipedia.org/wiki/Magic_square
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the generated fractal improves with the accuracy 
used, as evident from the generated examples given 
below. 

216.  [[10,100,1000]]@FRACTAL 

   

Mandelbrot Set is the set of points in the complex 
plane with the sequence ( c , c² + c , (c²+c)² + c , 
((c²+c)²+c)² + c , (((c²+c)²+c)²+c)² + c , ...), where 
the result does not approach infinity. The Julia Set 
is closely related to Mandelbrot Set. 

The Mandelbrot Set is obtained from the quadratic 
recurrence equation: 

zn+1=zn
2+c, (with z0=0),   

where points c in the complex plane for which the 
computed value of zn does not tend to infinity.  

The colors represent points that remain bounded 
within a limit for such recursive calls. 

217.  FDZ3() 

 

FDZ3 gives the FRACTAL generated for 

zn+1=zn
3+c. 

7.d.vii. LISSAJOUS 

Lissajous Curve is a parametric plot of the harmonic 
system. It is also called Bowditch Curves. This family 
of curves was investigated by Nathaniel Bowditch, 
an American mathematician in 1815, and later in 
more detail by Jules Antoine Lissajous in 1857.  

Lissajous used sounds of different frequencies to 
vibrate a mirror. A beam of light reflected from the 
mirror, was allowed to trace patterns which 
depended on the frequencies of the sounds – in a 
setup similar to projectors used in today's laser light 
shows.  

Lissajous figures often appeared as props in science 
fiction movies made during the 1950's. It has 
serious applications in physics, astronomy, and 
other sciences today. 

Technically, Lissajous figure is the intersection of 
two sinusoidal curves, the axes of which are at right 
angles to each other. Mathematically, this translates 
to a Complex harmonic function:    

 

The appearance of a figure is highly sensitive to a/b, 
the ratio of a and b.  

According to the ratio value, the shapes of the 
figures change in interesting ways. 

For a a/b ratio=1, the figure is an ellipse. 

For a=b, δ = π/2 radians, the figure is a circle. 

For δ = 0, the figure is a line. 

For a/b = 2, δ = π/4, the result is a parabola. 

The Lissajous curve gets more complicated for 
other ratios, which are closed only if a/b is rational. 

218.  LISSAJOUSCURVE("ellipse") 

 

 

http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Nathaniel_Bowditch
http://en.wikipedia.org/wiki/Jules_Antoine_Lissajous
http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Rational_number
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LISSAJOUSCURVE function can be given upto 8 
parameters packed in a set indicating a1, b1, c1, d1, 
a2, b2, c2 and d2, or a string like "ellipse", "parabola" 
etc. 

219. LISSAJOUSCURVE([2,3,3,3,4,5,3,4]) 

 

With the interactive parameter changing technique, 
right click on the parameter that you want to change 
on the ZOS display lines.  

Use the range controls that appear to generate a 
variety of such curves as given below. 

 

220. LISSAJOUSCURVE([2,61,3,3,4,5,3,4]) 

 

 

 

221. LISSAJOUSCURVE([2,70,3,3,4,5,3,4]) 

 

 

 

222. LISSAJOUSCURVE([2,79,3,3,4,5,3,4]) 
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LISSAJOUS Curves are fascinating regarding the 
types of curves you can generate by simply changing 
the parameters. 

223.  LISSAJOUSCURVE([1,-3,32,3,-

4,52,-4,4]) 

 

 

7.d.viii. GRAPHING DATA CURVE 

A plot is used for representing a dataset graphically 
- usually showing the relationship between two or 
more variables.  

Graphs of functions are used 
in mathematics, sciences, engineering, technology, 
finance, and many other areas. 

224.  1..100@"x^2" .graph() 

 

Two axes are using to plot a graph. The horizontal 
axis is called the x-axis and the vertical one is the y-
axis.  

225.  1..10..0.008@COS .graph() 

 

 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Finance
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In z^3, user can also use multiple functions to plot 
a graph showing values from both: 

226.  1..360@[DSIN,DCOS] .graph() 

 

 

 

7.e. Financial Functions 

A variety of functions are available in z^3. The 
functions generally follow the functions available in 
Spreadsheets, Databases, etc. 

For example, PMT function finds the payment per 
period for a loan, based on constant payments and 
a constant interest rate.  

The general syntax for this is:  

PMT(Rate,NoPaymentPeriods,PresentValue,FutureValue, Type) 

The Type parameter can be 0 or 1, to indicate the 
payment at the start of end of the period. 

227.  PMT(0.132/12,15,50000,100000,1) 

-9695.799429757533 

228.  PMT(0.132/12,15,50000,100000,0) 

-9802.453223484865 

Now, we can really rev things up to analyze a variety 
of inputs with a single command. 15..60..5 will 
effectively find all combinations of arguments, with 
the NoPaymentPeriods for 15, 20, 25, 30, 35, 40, 45, 
50, 55 and 60. 

 

229.  PMT(0.132/12,15..60..5,50000,100000,0) 

 

Similarly, the future value of an annuity can be 
calculated using the FV function, given the rate, 
number of payment periods, payment per period, 
optional present value and a type flag indicating the 
payment to be done at the start or end of the period. 

230.  FV(0.05/12,14,-1500,1) 

21577.278753101153 

On the other hand, PV function gives the present 
value, for an optional future value. This can easily 
be followed by changing the parameters to try out 
different scenarios, such as changing the type 
parameter. 

231.  PV(0.07/12,20*12,2500,0) 

-322456.2662406346 

232.  PV(0.07/12,20*12,2500,0..1) 

To find the number of days of in the coupon period 
that contains the settlement date, use the 
COUPDAYS function. 

233.  COUPDAYS 

(DATE(2012,1,1),DATE(2013,1,1),1,1) 

366 

COUPDAYBS gives the number of days from the 
beginning of a coupon period until its settlement 
date. 



z^3 

39 

 

234.  COUPDAYBS(DATE(2008,6,1),DATE(2009,1,1),2,1) 

152 

COUPDAYSNC gives the number of days from 
the settlement date to the next coupon date.. 

235.  COUPDAYSNC( 

   DATE(2012,1,6), 

   DATE(2013,6,6), 

   1,1 

  ) 

152 

Several functions also available in z^3 to calculate 
financial values, of which some are indicated below.  

• XIRR - To calculate internal rate of return. 

• IRR - To calculate the internal rate of return of 

a cash flow stream associated with an 

investment. 

• MIRR - To find the value of the modified 

internal rate of return for a particular cash flows. 

• XNPV - To find the net present value for a 

schedule of cash flows . 

• NPV - To calculate the net present value of an 

investment. 

• SYD - To find  the depreciation of an asset for 

a given time period . 

• EFFECT - To calculate  the effective annual 

interest rate. 

Combination of these financial functions with 
combinatorial arguments, provides the ability to do 
flexible analysis for a variety of inputs as below. 

The example shows the possibility of analysis by 
varying the parameters over ranges of dates, 
frequencies, etc.  

This can be a powerful analytical or teaching tool in 
professional and educational settings. 

236.  COUPDAYSNC( 

  DATE(2008,1..12,1), 

  DATE(2009,11,1), 

  1..2,1 

  ) 

Listing of dates in a series can be achieved by the # 
operator for easy use in date and financial functions.  

 

For example, (#2/2/2012-2/12/2012) will give this 
series of dates as in the following example. 

237.  (#2/2/2012-2/12/2012)@DAYSINYEARTILLDATE 

Date DAYSINYEARTILLDATE 

2/2/12 33day 

2/3/12 34day 

2/4/12 35day 

2/5/12 36day 

2/6/12 37day 
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2/7/12 38day 

2/8/12 39day 

2/9/12 40day 

2/10/12 41day 

2/11/12 42day 

2/12/12 43day 

 

7.f. Statistical Functions: 

In mathematics, statistics is the body of science that 
deals with the analysis, interpretation, presentation 
and organization of data. z^3 provides a large 
collection of statistical functions that perform most 
of the common Statistical calculations from simple 
min, max, mean, median and mode calculations to 
more complex  Statistical Distribution  and 
Probability tests, Distributions, Frequency, Rank, 
Deviation, Variance, Trend Lines, etc.  

238.  MAX(-10..0,13..25) 

25 

 

239.  MIN(-29..10) 

-29 

240.  AVEDEV(-15..22) 

9.5 

241.  VARA(10,15,20,25,false) 

92.5 

242.  CORREL([(-10)..(-3)],[20..28]) 

0.8366600265340756 

243.  FISHER(0.1..0.4..0.1) 

0.10033534773107562 0.2027325540540821

 0.3095196042031118 0.42364893019360184 

 

 

244.  KURT([-40..30,35..60..0.7]) 

-1.1999999999999988 

245.  WEIBULL(143,180,170,true) 

3.019806626980426e-14 

Using z^3, user can conduct a variety of Statistical 
Tests.  

These include: 

 

ANOVA SINGLE FACTOR 

BARTLETT'S TEST 

CHITEST 

COCHRAN'S Q TEST 

DURBIN WATSON TEST 

FTEST 

FRIEDMANN TEST 

KENDALL'S TAU TEST 

KRUSKALWALLI'S TEST 

KSTESTCORE 

KSTESTEXPONENTIAL 

KSTESTNORMAL 

LEVENE'S TEST 

MANNWHITNEY U TEST 

MOODSMEDIAN TEST 

RIEMANN ZETA TEST  

SHAPIRO-WILK TEST 

SIGN TEST 

SPEARMAN'S RHO TEST 

TTEST 

TTEST PAIRED 

TTEST TWO SAMPLES EQUALVARIANCES 

TTEST TWO SAMPLES UNEQUALVARIANCES 

WILCOXON RANK SUM TEST 

WILCOXON SIGNEDRANK TEST 

ZTEST 

ZTEST TWO SAMPLE FOR MEANS 

More info is given at http://wiki.zcubes.com 

  

http://wiki.zcubes.com/ANOVASINGLEFACTOR
http://wiki.zcubes.com/Bartlett%27sTest
http://wiki.zcubes.com/CHITEST
http://wiki.zcubes.com/Cochran%27s_Q_Test
http://wiki.zcubes.com/Durbin-Watson
http://wiki.zcubes.com/Kendall%27s_Tau_Test
http://wiki.zcubes.com/KRUSKALWALLISTEST
http://wiki.zcubes.com/KSTESTCORE
http://wiki.zcubes.com/KSTESTEXPONENTIAL
http://wiki.zcubes.com/KSTESTNORMAL
http://wiki.zcubes.com/LEVENESTEST
http://wiki.zcubes.com/MANNWHITNEYUTEST
http://wiki.zcubes.com/MOODSMEDIANTEST
http://wiki.zcubes.com/Shapiro-Wilk_Test
http://wiki.zcubes.com/SIGNTEST
http://wiki.zcubes.com/Spearman%27s_Rho_Test
http://wiki.zcubes.com/TTEST
http://wiki.zcubes.com/TTESTPAIRED
http://wiki.zcubes.com/TTESTTWOSAMPLESEQUALVARIANCES
http://wiki.zcubes.com/TTESTTWOSAMPLESUNEQUALVARIANCES
http://wiki.zcubes.com/WILCOXON_RANK_SUM_Test
http://wiki.zcubes.com/WILCOXONSIGNEDRANKTEST
http://wiki.zcubes.com/ZTEST
http://wiki.zcubes.com/ZTESTTWOSAMPLEFORMEANS
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8. Appendices 

8.a. Appendix I Operators 

The following operators are used in the z^3 
language: 

+, -, *,  /, ^, % Arithmetic 
Operators 

| |    Array Function and 
Creation Operator 

.. , ...   Arithmetic and 
Geometric Series 
Creation 

@   Apply to 

#   Series or Special 
Case Qualifier for 
Dates, Calci 

Cells, and 
Sequences, etc. 

 

<<<   Member or Variable 
Assignment 

()   Function Call 

[]  
   

Set Creation 

{} Object Set 

[“key”] Set Object 
Membership 

.   Member Function 
Dereferencing. 

. mf    Member Function 

.$(function, 
parameters)  

Element-wise 
Function 
Application 

.$$(function, 
parameters)  

Row-wise Function 
Application 

.$$$(function, 
parameters)   

Column-wise 
Function 
Application 

.$_(function, 
parameters)  

Cumulative 
Function 
Application (all) 

 

8.b. Appendix II: Simple Set and Objects 

8.b.i. SET 

Simple Set are declared using the conventional [ ] 
notation, and items are then accessed using the 
common [index] notation. 

8.b.ii. ASSOCIATIVE SET/OBJECTS 

In z^3, associative set are distinct from simple set, in 
both declaration and qualification syntax.  

Associative set can be declared using { } notation, with 
members within indicated using (:) as the separator 
between the member id and the value. While 
accessing such a member, conventional operator (.) 
is used to reference it. 

In the following example all these characteristics are 
demonstrated elegantly as a data and a function are 
associated. 

246.  

A1={"a":8,"g":function(x){return(x+5)}} 

{ 

    "a": 8 

} 

247.  A1.g(5) 

   10 
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8.c. Appendix III: Javascript and z^3  

z^3 uses Javascript as a backbone and provides full 
functionality and power of Javascript to pass 
through. 

8.c.i. USING SET MEMBER FUNCTIONS 

For example, any set, including matrices, can be 
operated on using any of the set member functions.  

This can be triggered even with simple javascript 
commands as follows. Note the repeated 
application of additional member functions. In the 
following, .seq() fills a set with a sequence, and 
.explode() expands an element into a set having 
elements from 1 to that element. 

248.  new 

Array(8).seq().explode(1).print() 

 [ 

 [ ], 

 

 [1 ], 

 

 [1,2 ], 

 

 [1,2,3 ], 

 

 [1,2,3,4 ], 

 

 [1,2,3,4,5 ], 

 

 [1,2,3,4,5,6 ], 

 

 [1,2,3,4,5,6,7 ] 

] 

249.  new 

Array(8).seq(2).explode(1).print() 

[ 

 [1,2 ], 

 

 [1,2,3 ], 

 

 [1,2,3,4 ], 

 

 [1,2,3,4,5 ], 

 

 [1,2,3,4,5,6 ], 

 

 [1,2,3,4,5,6,7 ], 

 

 [1,2,3,4,5,6,7,8 ], 

 

 [1,2,3,4,5,6,7,8,9 ] 

] 

250.  new Array(8).seq().print() 

[0,1,2,3,4,5,6,7] 

251.  new Array(8).seq(2).print() 

[2,3,4,5,6,7,8,9] 

252.  new Array(8).seq(2,2).print() 

[2,4,6,8,10,12,14,16] 

253. new 

Array(8).seq(2,2).explode(2).print() 

 [ 

 [2,3 ], 

 

 [2,3,4,5 ], 

 

 [2,3,4,5,6,7 ], 

 

 [2,3,4,5,6,7,8,9 ], 

 

 [2,3,4,5,6,7,8,9,10,11 ], 

 

 [2,3,4,5,6,7,8,9,10,11,12,13 ], 

 

 [2,3,4,5,6,7,8,9,10,11,12,13,14,15 ], 

 

 [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17

 ] 

] 

An identity matrix of size 5 is generated, filled with 
random numbers and then cleared and filled with 3, 
and is printed below. 

254.  IM(5).deal().clear(3).print() 

[ 

 [3,3,3,3,3 ], 

 

 [3,3,3,3,3 ], 

 

 [3,3,3,3,3 ], 

 

 [3,3,3,3,3 ], 

 

 [3,3,3,3,3 ] 

] 
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8.d. Appendix IV Series Generation 

Creating series of items to be the input for further 
processing is a powerful aspect of z^3.  

These can range from arithmetic series, geometric 
series, other prepacked series, alphabet series, and 
date series. 

8.d.i. ARITHMETIC SERIES 

<Start>..<end>..<interval>  

notation is adopted for arithmetic series. 

e.g.:  

1..100..2 

8.d.ii. GEOMETRIC SERIES 

<Start>…<end>…<index>  

notation is adopted for arithmetic series. 

e.g.:  

1...100...2 

8.d.iii. PREPACKED SERIES 

Several standard situations like angles in radians of 
degrees are indicated as below.  

The terms can be composed using the pattern, (the 
numbers can be changed as you need), in a self-
evident manner: 

rad360by4 

deg180by3 

deg360by4@SIN 

radpi/2by3 

radpiby13 

radpiby3 

radpiby2 

deg180by5 

deg360by1@SIN 

deg360by180@SIN 

deg3600by180@SIN 

radPiby13@LOG 

rad16*Piby16 

e.g.: 

SIN(radpiby2) 

radpiby10@[SIN,COS] .graph() 

8.d.iv. DATE SERIES 

A series of dates can be generated using # symbol 
followed by the data range. #<Start>-<End > 
Dates. 

e.g.:  

#1/1/2001-1/31/2013  

8.d.v. ALPHABET SERIES 

A series of letters can be generated using # symbol 
followed by the letter range. #<Start>-<End  
Letters. 

e.g.:  

#a-z  

#A-D 

 

8.e. Appendix V Member Functions 

The following is a listing of member functions for 
sets, strings, functions, objects and other key objects. By 
convention, member functions follow lowercase 
notation in general, while primary functions follow 
uppercase notation. The intellisense capability on 
the command-line assists users with listing of 
functions and arguments, simply by pressing 
Ctrl+Space using the keyboard. Set member 
functions are given under the Array object in the 
following table, in an interchangeable manner. 

 

Object Member Function  Parameters 

 String endsWith  Str 

  Array PAD 
 

 Array headingset Array 

 Array some  fun /*, thisp*/ 

 Array shuffle  
 

 Array map  callback, thisArg 

 Array IntArrayToString  
 

 Array ZCompareArrays  Arr 

 Array ZMap  Fnc 

 Array ZFoldRight fnc,start 

 Array ZFoldLeft fnc,start 
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 Array ZExistsObject  x 

 Array ZFilter  fnc 

 Array ZRandomElement 
 

 Array IsArray 
 

 Array ZMapR  fnc 

 Array table  
 

 Array calci  
 

 Array transpose  IncludeHeader 

 Array column  
 

 Array columns  
 

 Array row 
 

 Array rows 
 

 Array cell Row, Column, 

Width, Height 

 Array cells 
 

 Array accumulate Total 

 Array cumcolumns  
 

 Array cumrows 
 

 Array cumcolumn 
 

 Array cumrow 
 

 Array accumulatewith CumulateFunction, 

CurrentResult 

 Array cumcolumnswith  
 

 Array cumrowswith 
 

 Array cumcolumnwith 
 

 Array cumrowwith 
 

 Array stringlist 
 

 Array tofunctions 
 

 Array setHeadings Headings 

 Array headings 
 

 Array istype  
 

 Array t  
 

 Array copy  
 

 Array extract 
 

 Array zip OtherArray 

   

 Array unzip 
 

 Array zero  ValueInstead, 

PreserveStructure 

 Array random Base,Numbers 

 Array rand 
 

 Array pad  Length, PadString 

 Array dim 
 

 Array seq StartIndex, By 

 Array explode StartIndex, By, 

RecurseTillLevel  

 Array implode RecurseTillLevel 

 Array unimplode RecurseTillLevel 

 Array specialprint Trimmed,TabLevel 

 Array print Trimmed,TabLevel 

 Array cartesianproduct IsWithoutFlatten 

 Array make1to2d ReplaceOriginal 

 Array twod  
 

 Array is2d  
 

 Array is1d  
 

 Array rowpush OtherArray 

 Array count FirstLevelOnly 

 Array mergecolumns OtherArray 

 Array clone 
 

 Array rowconcat OtherArray 

 Array mergerows 
 

 Array colconcat 
 

 Array columnconcat 
 

 Array rowlengths Function 

 Array deal Within, ManyInEach 

 Array nth Nth, Count 

 Array first Count 

 Array first 
 

 Array second 
 

 Array third 
 

 Array fourth 
 

 Array fifth 
 

 Array sixth 
 

 Array seventh 
 

 Array eighth 
 

 Array nineth 
 

 Array tenth 
 

 Array eleventh 
 

 Array twelfth 
 

 Array thirteenth 
 

 Array fourteenth 
 

 Array fifteenth 
 

 Array sixteenth 
 

 Array seventeenth 
 

 Array eighteenth 
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 Array nineteenth 
 

 Array twentieth 
 

 Array hundredth 
 

 Array thousandth 
 

 Array millionth 
 

 Array last Count 

 Array lastelement Count 

 Array firstelement Count 

 Array pastefolds MidOnly 

 Array mid From,Count 

 Array few 
 

 Array any Count 

 Array isTrue 
 

 Array isFalse 
 

 Array rest Start, Count 

 Array otherthan ArrayWithElementsT

oExclude 

 Array where Term 

 Array spliteach SplitExpression, 

RetainSplitterAlso

InResult 

 Array slices SliceExpression 

 Array core 
 

 Array nicejoin JoinString, 

EndString, 

SubArrayString 

 Array fjoin HeadLength, 

JoinString 

 Array funcjoin HeadLength, 

FindString, 

FirstString, 

MidString, 

LastString 

 Array injoin JoinWith 

 Array merge OtherArray, 

Function 

 Array across OtherArray, 

Function 

 Array across OtherArray, 

Function 

 Array insert Value, 

AfterLastFlag 

 Array pairmatch AtFoldValue, 

AtReverseFoldValue

, StartFrom 

 Array fold AtFoldValue, 

AtReverseFoldValue 

 Array filter Function 

 Array plot Mode 

 Array removeByVal Value 

 Array graph Mode 

 Array car 
 

 Array cdr 
 

 Array head 
 

 Array tail 
 

 Array equal Array, 

CheckLength, 

StartFrom 

 Array equalvalues Array,CheckLength, 

StartFrom 

 Array compare 
 

 Array pack 
 

 Array multisort 
 

 Array clean Expression, 

ReplaceWith 

 Array is Thing, IsNot 

 Array isnull 
 

 Array isnotnull 
 

 Array match Expression 

 Array matchcolumn Expression, Column 

 Array matchrow Expression, Row 

 Array matchindex Expression, 

IndexThenFromMatch 

 Array matchvalue Expression, 

IndexThenFromMatch 

 Array include 
 

 Array notinclude Item 

 Array flatten 
 

 Array forward Function, 

StartValue 

 Array backward Function, 

StartValue 

 Array rotaterows NumberOfSteps 

 Array rotatecolumns NumberOfSteps 

 Array parts NumberOfParts, 

SpecificPart 

 Array half 
 

 Array halves 
 

 Array thirds 
 

 Array fourths 
 

 Array firsthalf 
 

 Array secondhalf 
 

 Array flipparts 
 

 Array rotate NumberOfSteps 

 Array exec 
 

 Array maprow Function 

 Array mapper Function 
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 Array maplist  fun 

 Array maprow Function 

 Array mapper 
 

 Array maplist  fun 

 Array i  PreviousArray 

 Array __$ 
 

 Array ri 
 

 Array ri 
 

 Array ci 
 

 Array $ 
 

 Array $$ 
 

 Array $$$ 
 

 Array $_ 
 

 Array $x 
 

 Array x$ 
 

 Array $X 
 

 Array X$ 
 

 Array $CELLS 
 

 Array $R 
 

 Array $C 
 

 Array $A Parameter 

 Array $dth 
 

 Array $diag 
 

 Array $d 
 

 Array ids  
 

 Array rowcount  
 

 Array colcount  
 

 Array size2d 
 

 Array size 
 

 Array cube 
 

 Array slides 
 

 Array o  
 

 Array flatten  
 

 Array remove 
 

 Array removewith 
 

 Array objects 
 

 Array eval  
 

 Array set 
 

 Array setrow Row, Array 

 Array setcolumn Column, 

ColumnValues 

 Array flip 
 

 Array reverselevel Level 

 Array shiftlevel Level, 

NumberOfTimes 

 Array fillwith 
 

 Array branch 
 

 Array branchvalues 
 

 Array clearcopy FillWith 

 Array clear FillWith 

 Array filtermatches MatchIdenticalMatr

ix, OnlyMatches 

 Array replace ExpressionArrayOrV

alues, ReplaceWith 

 Array replicate Count 

 Array unwrapleaf 
 

 Array appendfunction Function 

 Array $$F 
 

 Array across OtherArray, 

Function 

 Array pair Value, OnRight 

 Array except 
 

 Array ntimes Function, 

NumberOfIterations

, Accuracy, 

Converge 

 Array converge Function, 

NumberOfIterations

, Accuracy, 

Converge 

 Array repeatntimes Function, 

NumberOfIterations

, Accuracy, 

Converge 

 Array pieces Width, Function 

 Array foldl Function, 

StartSeed 

 Array foldr Function, 

StartSeed 

 Array partitiononcondi

tion 

TakeDropOrAllFlag, 

Function, 

Parameter 

 Array filteronconditio

n 

TakeDropOrAllFlag, 

Function, 

Parameter 

 Array collectwhile 
 

 Array suchthat 
 

 Array collect 
 

 Array takewhile 
 

 Array dropwhile 
 

 Array collectwhileasve

ctor 

 

 Array suchthatasvector 
 

 Array collectasvector 
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 Array takewhileasvecto

r 

 

 Array dropwhileasvecto

r 

 

 Array splitwhile 
 

 Array splitwhileasvect

or 

 

 Array det Array 

 Array adjoint Array 

 Array inverse Array 

 Array determinant 
 

 Array adjoint 
 

 Array inverse 
 

 Array addsequence InFront,StartFrom,

OptionalSequenceAr

ray 

 Array addrow NumberOfRows 

 Array addcolumn NumberOfColumns 

 Array insertrow Index, 

NumberOfRows 

 Array insertcolumn Index, 

NumberOfColumns 

 Array deleterow Where 

 Array deletecolumn Where 

 Array ar 
 

 Array ac 
 

 Array dr 
 

 Array dc 
 

 Array ir 
 

 Array ic 
 

 Array bindcolumn 
 

 Array filteronrow Condition, 

ExtractColumns, 

FilterOnColumn 

 Array filteroncolumn Condition, 

ExtractColumns, 

FilterOnColumn 

 Array aggregate Columns,Function, 

Params 

 Array lookup 
 

 Array reversesort Function 

 Array printf StyleString, 

JoinString 

 Array atindex 
 

 Array data 
 

 Array result 
 

 Array type  
 

 Array checktype TypeArray,ForceChe

ckOnVariables 

 Array numbers ForceCheckOnVariab

les 

 Array drop 
 

 Array keep 
 

 Array nullifyobjects Recursive 

 Array ZJSON Recursive 

 Array makekeyarray Recursive 

 Array atnode Function,SubtractB

yArray,ScaleByArra

y,DoNotShowIndices 

 Array nodeindex 
 

 Array indices Function,SubtractB

yArray,ScaleByArra

y,DoNotShowIndices

,RowArray 

 Array xy FunctionArray, 

OffsetArray, 

ScaleArray, 

GiveIndicesAlso,Do

Centering 

 Array xypanel FunctionArray, 

OffsetArray, 

ScaleArray, 

GiveIndicesAlso 

 Array tablelookup RowValueMatch, 

ColumnValueMatch 

 Array t 
 

 Array c 
 

 Array r 
 

 Array uncrosstab UptoColumn 

 Array crosstab RowSet, 

ColSet,PageSet,Dat

aSet 

 Array findcellref Values 

 Array setaxis Axis, ColumnValues 

 Array joincolumnswith ArrayOfJoinCharact

ers,IsRepeat 

 Array joinrowswith ArrayOfJoinCharact

ers,IsRepeat 

 Array notwithinlimits LimitArray, 

IncludeEdges 

 Array withinlimits LimitArray, 

IncludeEdges 

 Array concatall LimitArray, 

IncludeEdges 

 Array deepcopy 
 

 Array async  Iterator, CallBack 

 Array value  Function 

 Array of  
 

 Array truefalse  IsCheckTrueFunctio

nList,IsCheckFalse

FunctionList,DoFla

ttenFirst 
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 Array fixat Index,Fix 

 Array prefix 
 

 Array suffix 
 

 Array chunks ChunkSize 

 Array add Thing 

 Array inc  
 

 Date format  mask, utc 

 

Function 

$ 
 

 

Function 

merge array, args 

 

Function 

argumentNames 
 

 

Function 

update array, args 

 

Function 

curry 
 

 

Function 

delay timeout 

 

Function 

defer 
 

 

Function 

argumentaslist 
 

 

Function 

wrap wrapper 

 

Function 

fury AvoidArguments 

 Number units 
 

 Number fuzzy 
 

 Number getfuzzy 
 

 Number larger OtherNumber 

 Number smaller OtherNumber 

 Number normalizeunits OtherUnits 

 Number add OtherNumber 

 Number subtract OtherNumber 

 Number multiply OtherNumber 

 Number divide OtherNumber 

 Number div OtherNumber 

 Number power OtherNumber 

 Number m 
 

 Number a 
 

 Number s 
 

 Number d 
 

 Number di 
 

 Number p 
 

 Number makeunits String 

 Number compareto OtherNumber 

 Number equals OtherNumber 

 Number notequals OtherNumber 

 Number string 
 

 Number setunit ToUnits 

 Number convert ToUnits 

 Number eval 
 

 Number replicate Count 

 Number isin Array,IgnoreCase 

 Number trim 
 

 Number slice 
 

 Number withinlimits LimitArray, 

IncludeEdges 

 Object print 
 

 Object makecopy  
 

 Object core 
 

 Object keyprint ElementSplit, 

LineSplit, 

QuoteKey, 

BracketWrap 

 String reverse  
 

 String eval 
 

 String trim  
 

 String trimend  
 

 String trimbegin  
 

 String trimstart  
 

 String toInt  
 

 String duplicate NumberOfTimes 

 String encrypt  Seed 

 String decrypt  Seed 

 String endsWith  str 

 String startsWith  str 

 String inarray Array, IgnoreCase 

 String isin  
 

 String cube 
 

 String equation Replace 

 String replicate Count, JoinWith 

 String pieces Each 

 String uniteval 
 

 String tagvalues Tags 

 String tokens Splitter 

 String clean Expression, 

ReplaceWith 

 String insert  index, string 

 String splitat AtArray 

 String substringindices SubString 
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9. How to work with zcubes 

Here are the links to help you  on  working with 
ZCubes and learn more about ZCubes features. 
http://wiki.zcubes.com/Learn_ZCubes 

 

 

 

http://wiki.zcubes.com/Learn_ZCubes




 

 

 

 

 

 

 

 

 

 

 

www.zcubes.com 

Do It All! 


